
Editorial	Board	Thoughts:	Content	and	
Functionality:	Know	When	to	Buy	‘Em,	
Know	When	to	Code	‘Em1	 		Kenneth	J.	Varnum2	

	

INFORMATION	TECHNOLOGIES	AND	LIBRARIES	|	SEPTEMBER	2017	 	 	

	

3	

We	in	library	technology	live	in	interesting	times,	though	not	those	of	these	apocryphal	curse.	No,	
these	are	interesting	times	in	the	best	possible	way.	Where	once	there	was	a	paucity	of	choice	in	
interfaces	and	content,	we	have	arrived	at	a	time	when	a	range	of	competing	and	valid	choices	
exists	for	just	about	any	particular	technology	need.	Data	and	functionality	of	actual	utility	to	
libraries	are	increasingly	available	not	just	through	proprietary	interfaces,	but	also	through	APIs	
(Application	Programming	Interfaces)	that	are	ready	to	be	consumed	by	locally	developed	
applications.	This	has	expanded	the	opportunity	for	libraries	to	respond	more	thoughtfully	and	
strategically	to	local	needs	and	circumstances	than	ever	before.	Libraries	are	faced	with	an	actual,	
rather	than	hypothetical,	choice	between	building	or	buying	fundamental	user	interfaces	and	
systems		

As	the	internet	has	evolved,	and	coding	has	become	more	central	to	the	skillset	of	many	libraries,	
the	capability	of	libraries	to	seriously	consider	building	their	own	interfaces	has	grown.	How	does	
a	technologically	capable	library	make	the	decision	to	buy	a	complete	system	or	build	its	own	
interface	to	existing	data?	The	process	can	be	decided	using	a	range	of	criteria	that	can	help	define	
the	library’s	need	for	a	locally	managed	solution.	We’ll	start	by	discussing	technological	
capabilities	needed	to	take	on	almost	any	development	project,	then	define	three	criteria,	and	
finally	discuss	the	circumstances	in	which	a	build	solution	might	be	appropriate.	The	goal	is	
outline	a	process	for	deciding	when	it	make	more	sense	to	buy	both	the	interface	and	the	content,	
to	build	one	or	the	other	locally,	or	to	build	both.	

Criterion	0:	What	are	the	short-	and	long-term	technological	capabilities	of	the	library?	

Clearly,	the	first	point	of	consideration	is	whether	the	institution	has	the	capacity	to	manage	
application	development	and	user	research.	The	short-term	answer	may	be	no,	but	the	long-term	
answer	--	one	based	on	the	library’s	strategic	direction	--	may	be	that	these	skills	are	needed	to	
meet	the	library’s	goals	or	strategic	vision.	One	project	may	not	be	enough	to	tip	the	scales,	but	if	
the	library	is	continually	deciding	if	the	immediate	project	under	discussion	is	the	one	to	change	
the	balance,	then	perhaps	the	answer	is	that	it’s	time	to	invest	in	new	skillsets	and	capabilities.	

There	are	actually	several	skillsets	needed	to	undertake	development	projects.	Individuals	with	
coding	skills	are	needed	to	adapt	existing	open-source	software	to	the	library’s	needs	—	it	is	a	rare	

	
1	With	apologies	to	Kenny	Rogers	
2Kenneth	J.	Varnum	(varnum@umich.edu),	a	member	of	the	ITAL	Editorial	Board,	is	Senior	
Program	Manager	for	Discovery,	Delivery,	and	Library	Analytics	at	the	University	of	Michigan	
Library,	Ann	Arbor,	MI.		



	

EDITORIAL	BOARD	THOUGHTS	|	VARNUM	 	 	
https://doi.org/10.6017/ital.v36i3.10087	 	

4	

open-source	project	that	does	exactly	what	a	library	needs	it	to	do,	with	connectors	to	all	the	same	
data	sources	and	library	management	tools	already	perfectly	configured	by	somebody	else	—	but	
that	is	not	sufficient.	A	library	also	needs	people	with	user	interface	and	user	research	skills	
ensure	that	the	application	meets	at	least	the	critical	needs	of	its	own	user	community,	and	does	
so	with	language	and	cues	that	match	user	expectations.		

Even	if	there	is	not	a	permanent	capability	on	the	library’s	staff,	development	can	take	place	with	
contract	services.	If	this	is	the	option	selected,	a	library	would	do	well	to	make	sure	that	staff	are	
sufficiently	trained	to	make	minor	updates	to	interfaces	and	applications,	or	that	a	longer-term	
arrangement	is	made	for	ongoing	maintenance	and	updates.	

Criterion	1:	What	is	the	need	to	customize	interactions	to	local	situations?	

Most,	but	not	all,	applications	offer	opportunities	to	match	interface	features	and	functionality	
with	local	user	needs.	The	more	interactive	and	core	to	the	library’s	service	model	the	tool	is,	the	
more	likely	the	tool	is	to	benefit	from	customization.	For	example,	a	proxy	server	--	technology	
that	allows	an	authenticated	user	to	access	licensed	content	as	if	she	were	in	the	physical	library	
or	within	a	campus	on	a	defined	network	--	has	little	or	no	user	interface.	There	is	little	need	to	
customize	the	tool	to	meet	user	needs,	beyond	ensuring	the	list	of	online	resources	and	URLs	
subject	to	being	proxied	is	up	to	date.	There	really	aren’t	any	particularly	useful	APIs	to	consumer	
and	reproduce	elsewhere,	and	there	are	easier	ways	to	build	an	A-Z	list	of	licensed	content	than	
harvesting	the	proxy	server’s	configuration	lists.	

In	contrast,	the	link	resolver	--	technology	that	takes	a	citation	formatted	according	to	the	
OpenURL	standard	and	returns	a	list	of	appropriate	full-text	destinations	to	which	the		library	has	
licensed	access	--	may	well	be	worth	bringing	in	house.	Some	vendors	offer	their	software	to	be	
run	locally,	while	others	provide	API	access	to	the	metadata.	At	my	institution,	we	used	the	APIs	
Serials	Solutions	makes	available	for	its	360	Link	API	to	build	our	own	interface	using	the	open-
source	Umlaut	software.	(See	https://mgetit.lib.umich.edu/).	Why	go	to	the	trouble	of	recreating	
an	interface?	For	several	reasons,	some	of	which	(understanding	user	behaviors	and	maintaining	
control	over	user	data	to	the	extent	practical)	I’ll	touch	on	in	the	following	two	sections.	The	main	
reason	centered	on	providing	a	user	interface	consistent	with	the	rest	of	our	web	presence,	
offering	integrations	to	our	document	delivery	service,	and	a	way	to	contact	our	online	chat	
service,	and	a	way	to	report	problem	links	directly	to	the	library	when	the	full	text	links	provided	
by	the	system	do	no	work.	While	these	features	are	generally	available	through	vendor	interfaces,	
the	user	experience	is	hard	to	make	consistent	with	other	services	we	offer.		

Criterion	2:	What	are	the	needs	for	integration	with	other	systems	from	different	providers?	

Integrations	can	run	in	two	directions:	from	the	system	under	consideration	to	existing	library	or	
campus/community	tools,	and	from	those	environmental	tools	to	the	library.	When	thinking	about	
the	buy-or-build	decision,	understanding	the	scope	of	these	integrations	up	front	is	important.	If	
all	of	the	tools	or	services	that	need	to	consume	information	from	or	provide	information	to	your	



	

	INFORMATION	TECHNOLOGIES	AND	LIBRARIES	|	SEPTEMBER	2017	 	 	

	

5	

system	rely	on	well-defined	standards	that	are	broadly	implemented,	this	criterion	may	be	a	wash;	
there	may	not	be	an	inherent	advantage	to	building	or	buying	based	on	data	exchange.		

If,	however,	the	other	systems	are	themselves	tricky	to	work	with,	relying	on	inputs	or	providing	
outputs	in	a	non-standard	or	idiosyncratic	way,	this	situation	may	swing	the	pendulum	toward	
building	the	system	yourself	so	you	can	manage.	For	example,	many	course	management	systems	
on	academic	campuses	can	consume	and	provide	data	using	the	LTI	[Learning	Tools	
Interoperability]	standard	for	data	exchange.	Many	traditional	library	applications	do,	as	well,	so	if	
a	library	using	an	LTI-compliant	system	needs	to	provide	course	reserves	reading	lists	to	the	
course	management	system,	this	is	a	ready-made	way	to	make	that	information	available.		

At	the	other	extreme,	bringing	registrar’s	data	into	a	library	catalog	--	to	know	who	is	in	what	
courses	to	provide	those	patrons	with	an	appropriate	reference	librarian	contact	for	a	particular	
subject,	or	access	to	a	reading	list	through	a	course	reserves	system	--	may	only	be	possible	
through	customized	applications	to	read	non-standard	data.	In	this	case,	to	provide	the	desired	
level	of	service	to	the	campus,	the	library	may	need	to	build	local	applications.	

Criterion	3:	Who	manages	confidentiality	or	privacy	of	user	interactions?		

A	final,	and	increasingly	significant,	criterion	to	consider	is	where	the	library	believes	
responsibility	for	patron	data	and	information	seeking	behavior	to	reside.	Notwithstanding	
contractual	or	licensing	obligations	taken	on	by	library	vendors,	the	risk	of	inadvertent	exposure	
or	intentional	sharing	of	user	interactions	is	always	present.	One	advantage	of	building	local	
systems	to	interact	with	vendor	systems	(link	resolvers,	discovery	platforms,	etc.)	is	that	vendor	
does	not	have	access	to	the	end-user’s	IP	address	or	any	other	personally	identifying	information.	
The	vendor	only	sees	a	request	coming	from	the	library’s	application;	all	requests	are	equal	and	
undifferentiated.	Of	course,	once	users	access	the	target	item	they	are	seeking	(an	online	journal,	
database,	etc.),	that	particular	vendor’s	site	has	access	to	that	information.	For	libraries	concerned	
about	user	privacy,	the	risk	of	exposure	is	somewhat	mitigated	by	managing	the	discovery	or	
access	layer	in-house	--	and	deciding	to	maintain	a	level	of	user	information	that	suits	that	
particular	library’s	comfort	level	--	and	potentially	minimizing	the	single	point	of	failure	for	
breaches.			

At	the	same	time,	such	a	decision	puts	more	responsibility	on	the	library	or	its	parent	information	
technology	organization	to	protect	data	from	exposure.	Some	libraries	feel	they	can	handle	this	
responsibility	--	either	by	careful	protection	of	the	data,	or	by	not	collecting	and	storing	it	in	the	
first	place	--	in	a	way	that	library	vendors	cannot.	

Concluding	Thoughts	

Making	the	buy-or-build	decision	is	not	straightforward;	the	criteria	described	here	are	not	the	
only	ones	a	library	might	wish	to	consider,	but	they	are	common	ones	with	the	greatest	
ramifications.	Putting	the	decision	process	into	a	framework	can	help	a	library	make	consistent	



	

EDITORIAL	BOARD	THOUGHTS	|	VARNUM	 	 	
https://doi.org/10.6017/ital.v36i3.10087	 	

6	

decisions	over	time,	enabling	it	to	focus	on	the	projects	and	systems	that	are	most	important	to	
the	library	and	its	community	(a	campus,	a	town,	or	company).	


