
ARTICLE

Knowledge Graph Visualization Interface for Digital
Heritage Collections
Design Issues and Recommendations
Christopher S. G. Khoo, Eleanor A. L. Tan, Siam-Gek Ng, Chwee-Fong Chan,

Michael Stanley-Baker, and Wei-Ning Cheng

INFORMATION TECHNOLOGY AND LIBRARIES | MARCH 2024
https://doi.org/10.5860/ital.v43i1.16719

About the Authors

Christopher S.G. Khoo (corresponding author: chriskhoo@pmail.ntu.edu.sg) is Associate Professor,
Nanyang Technological University, Singapore. Eleanor A.L. Tan (altan@nafa.edu.sg) is Principal
Lecturer, University of the Arts Singapore. Siam-Gek Ng (ng0001ek@e.ntu.edu.sg) is LIBRES Editorial
Assistant, Nanyang Technological University, Singapore. Chwee-Fong Chan (cs-
chweefong.chan@ntu.edu.sg) is LIBRES Editorial Assistant, Nanyang Technological University,
Singapore. Michael Stanley-Baker (msb@ntu.edu.sg) is Assistant Professor, Nanyang Technological
University, Singapore. Wei-Ning Cheng (ivanka@ntnu.edu.tw) is Assistant Professor, National Taiwan
Normal University, Taiwan. © 2024.

This peer-reviewed work was submitted 15 July 2023, accepted for publication 13 November 2023, and
published 18 March 2024.

ABSTRACT

Digital heritage portal interfaces are generally similar to digital library and search engine interfaces
in displaying search results as a list of brief metadata records. The knowledge organization and
search result display of these systems are item-centric, with little support for identifying relationships
between items. This paper proposes a knowledge graph system and visualization interface as a
promising solution for digital heritage systems to support users in browsing related items,
understanding the relationships between items, and synthesizing a narrative on an issue. The paper
discusses design issues for the knowledge graph, graph database, and graph visualization, and offers
recommendations based on the authors’ experience in developing three knowledge graph systems for
archive and digital humanities resources: the Zubir Said personal archive collection at the Nanyang
Academy of Fine Arts, Singapore; Singapore Pioneers social network; and Polyglot Medicine
knowledge graph of Asian traditional and herbal medicine. Lessons learned from a small user study
are incorporated in the discussion.

INTRODUCTION

Digital heritage portal interfaces are generally similar to digital library, bibliographic retrieval
system and search engine interfaces in displaying search results as a list of brief metadata items,
with each item hyperlinked to a more detailed metadata record display which may include the full
text or image of an information resource. Thus, digital heritage and digital library systems are
item-centric in design: users are expected to examine retrieved records one at a time, either in a
list or on separate web pages. The knowledge organization scheme, the database structure and the
interface of these systems are not designed to help users identify conceptually related resources
and ideas, except for a collection field indicating association with a particular context (e.g.,
institution, person, event, etc.), or a subject field with keywords, subject headings (from a
controlled vocabulary), or class code (from a classification scheme). These systems do not support
browsing by specific types of relationships such as different arrangements or performances
(expressions) of the same work, familial and business relationships between persons, and a chain

mailto:chriskhoo@pmail.ntu.edu.sg
mailto:altan@nafa.edu.sg
mailto:ng0001ek@e.ntu.edu.sg
mailto:cs-chweefong.chan@ntu.edu.sg
mailto:cs-chweefong.chan@ntu.edu.sg
mailto:msb@ntu.edu.sg

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 2
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

of correspondence; nor can they identify sets of items with particular relationship patterns to help
users synthesize a coherent narrative from the set of related records.

This paper proposes a knowledge graph system and visualization interface as a good solution for
digital heritage systems, and more generally digital humanities collections, to support users in
associative browsing (i.e., browsing related entities and concepts), in linking and integrating
information, and in synthesizing an overall understanding. The paper discusses design issues for
such systems, focusing on the graph visualization interface, and offers design recommendations
based on our experience in developing three knowledge graph systems. The paper is written to
guide digital archive and digital humanities researchers and digital librarians in developing
knowledge graph visualization interfaces.

Figure 1. Graph visualization of resources centered on Majulah Singapura,
the Singapore national anthem.

We use as the main case study the Zubir Said personal archive at the Nanyang Academy of Fine
Arts (NAFA), Singapore. Zubir Said (1907–1987) was the composer of the Singapore national
anthem and a pioneer musician in Singapore after World War II. His family donated his personal
archive to NAFA, and the authors of this paper were invited to develop a web-based system to
provide access to digital resources from the collection to support study and research.
Consequently, we developed the Zubir Said knowledge graph system (https://ZubirSaid.sg).

https://zubirsaid.sg/

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 3
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

Figure 1 shows a graph visualization of resources centered on Majulah Singapura, the Singapore
national anthem. In addition to the Zubir Said knowledge graph system, we also draw insights and
lessons from developing two other knowledge graph systems in digital humanities domains:

• Singapore Pioneers knowledge graph and social network (https://SingPioneers.sg): for
visualizing social networks of famous persons in post-war Singapore, derived from the
biography pages of the Singapore Infopedia (the Singapore National Library’s electronic
encyclopedia on Singapore); and

• Polyglot Medicine knowledge graph (https://kgraph.sg/polyglot): a knowledge graph of Asian
traditional and herbal medicines, linked to literary sources, historical, geographic, and
scientific information, and external database records.

THE KNOWLEDGE GRAPH SYSTEM

Though this paper focuses on the design of the web interface and graph visualization, the content
and design of the underlying knowledge graph, the capabilities of the graph database management
system, and the software packages used have a substantial impact on the interface and graph
visualization design. This section provides an overview of the knowledge graph system, focusing
on the aspects that have important implications for the interface display.

The three knowledge graph systems used as case studies have a 3-layer architecture (see fig. 2):

1. a graph database management system storing the knowledge graph and performing search
and analytic operations on the knowledge graph;

2. a web API (Application Programming Interface) serving as a middleware system,
performing additional data processing and mediating the interaction between the graph
database system and the web interface; and

3. a web interface with a graph (network) visualization function.

The main technologies used for each layer are listed in figure 2. This section provides an overview
of some of these technologies and outlines how their design and implementation affect the
interface display and graph visualization.

The information content and structure (or topology) of the graph visualization closely follow the
knowledge graph (i.e., the knowledge organization) that is constructed to serve as a metadata
layer to describe resources in the digital collection, the relations between them, and relations to
important concepts as well as to web resources outside the collection. There is no consensus or
standard definition of the term knowledge graph. In this section, we provide our perspective and
working definition of knowledge graph.

As the name implies, a knowledge graph employs a graph (i.e., network) structure of nodes (or
vertices) and directed links (also called edges or arcs, often displayed as arrows) to represent an
information/knowledge structure. The graph structure is assigned semantics or meaning by
assigning concept or entity labels to nodes and relationship types to the links. Some kind of
knowledge structure is often imposed on the graph by linking concept and entity labels to
taxonomies or class hierarchies (which are also represented in graph format). The term
knowledge graph is thus similar to ontology, semantic network, semantic web, linked data, and
Resource Description Framework (RDF), though each term emphasizes different aspects of
knowledge representation, different applications, and different research communities.

https://singpioneers.sg/
https://kgraph.sg/polyglot

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 4
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

Figure 2. Knowledge graph system architecture. (Image credit: iStock.com. Use under license.)

Web interface with graph visualization:
Interacts with the user and submits search query
parameters to the Web API. Uses Cytoscape.JS
JavaScript library to implement the graph
visualization.

Web API (middleware system) on a cloud server:
Stores the query logic and submits search queries
(with user parameters) to the database system. Uses
Node.JS + KOA JavaScript runtime environment,
deployed on Google App Engine.

Graph database system:
Stores the knowledge graph, and performs search and
analytic operations on the knowledge graph. Uses
Neo4j graph database on AuraDB cloud service.

The term knowledge graph has been traced back to Schneider, who suggested that the body of
knowledge that the instructor seeks to impart to students can be represented in simplified form as
a knowledge graph.1 Google popularized the term in 2012 by constructing a network of concepts
and entities derived from Wikipedia, DBpedia, and other sources as a supplement to keyword
searching.2 Bergman provided an extensive survey of knowledge graph definitions, and Hogan et
al. have offered a historical overview of the concept and term.3 Ehrlinger and Wöß reviewed
extant definitions of the term knowledge graph and proposed that “a knowledge graph acquires
and integrates information into an ontology and applies a reasoner to derive new knowledge.”4
This capability of a knowledge graph to support inferencing to derive new knowledge is important
for intelligent applications.

However, we propose an alternative definition of knowledge graph that distinguishes it from
ontology and emphasizes support for human information seeking and information use. We
propose that the focus of a knowledge graph is less on logical reasoning, but more on linking
things in a graph (network) representation. We also associate a knowledge graph with social
network analysis. Logical reasoning to infer new information (i.e., new nodes, links, or properties)
can be performed on a knowledge graph, but this is based less on logic and more on graph pattern
matching and social network analysis using the query language of the graph database
management system. The growth of graph databases has stimulated interest in these aspects of
knowledge graphs. We informally characterize a knowledge graph as a “social” network of
resources (ideas/concepts and entities) and the semantic relations between them, represented as

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 5
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

a network of nodes connected by directed links. The nodes are assigned meaning by labeling them
with classes in a taxonomy and assigning them properties (attributes). The links are also labeled
with relationship types and may be assigned properties as well.

As there is no international standard or industry specification for knowledge graphs, the features
of a knowledge graph and the operations that can be performed on it depend on the graph
database management software used. Graph database software can be divided into two main
types, following two different knowledge graph models: those based on triple-stores such as
Resource Description Framework or RDF and OWL2 Web Ontology Language, and those based on
the labeled property graph model. Barrasa and Feeney have discussed the differences.5 Our
knowledge graphs are implemented on the Neo4j graph database management system based on
the labeled property graph model. As this model is less well-known than RDF/OWL2, we
summarize the main differences below.

A major difference is that labeled property graphs can store properties in the links (relations). In
RDF and OWL2, relations cannot be assigned properties. To add a property to a relation, the
relation must be represented as an intermediate node, linked (by more primitive relations) to the
source and target nodes. This intermediate node will also allow it to have more than two relations
to other resources (i.e., an n-ary relation).6 Representing relations as intermediate nodes makes
the graph more complex and difficult to understand than representing them with just arrows.

Secondly, there is no built-in distinction between entity (instance) nodes and class nodes in
labeled property graphs. So, the developer must carefully distinguish between them in the graph
database design.

A third major difference is that a labeled property graph as implemented in Neo4j database
software is schema-free (or schema-less) in that node types are not specified with a set of
mandatory properties. Domain-range restrictions, property restrictions, and cardinality
restrictions used in OWL2 cannot be specified in a labeled property graph.7 So, any attribute-value
pair (property) can be added to any link in a labeled property graph, which makes it flexible but
also chaotic—as it is difficult to anticipate what attributes will be in a node or link during system
development. Thus, labeled property graphs are simpler and more lightweight than RDF/OWL2
graphs.

The Neo4j graph database management system is one of the most popular and highly-rated graph
database software.8 It is a pioneer in graph database technology with version 1 released in 2010.
Min provided a brief but informative history of graph database technology.9 Newer graph
database products (such as Ultipa Graph Database, TigerGraph, and JanusGraph) may be faster,
more scalable, and better able to handle transaction data (data generated by business and sales
operations) and real-time data. They also employ database schema. However, digital archive and
digital humanities collections probably do not require such huge data storage and fast processing,
nor transactional or real-time data analytics. In our opinion, Neo4j database amply meets archival
and digital humanities data needs. We especially like Neo4j’s graph query language (called
Cypher), which is more intuitive than SPARQL.

Our graph visualization interface runs in the user’s web browser and is the visible part of the
system to end users. Graph visualization is a natural way to display a knowledge graph or parts of
it: it renders the abstract network structure in a two-dimensional layout called graph
visualization. The nodes are assigned properties, including a unique identifier (ID), a label

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/owl2-primer/
https://neo4j.com/
https://www.ultipa.com/product/ultipa-graph
https://www.tigergraph.com/tigergraph-db/
https://docs.janusgraph.org/

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 6
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

attribute, and a type attribute. Usually, only the node label is displayed in the graph visualization.
The other node properties may be displayed in a separate text display panel (that we refer to as
info box).

The design of the graph visualization depends largely on the capabilities and scripting language of
the graph visualization software. We adopted the Cytoscape.js JavaScript graph visualization
library (https://js.cytoscape.org/) to realize the graph visualization on users’ web browsers.
Cytoscape was initially developed for visualizing gene expression data.10 The JavaScript library
version, Cytoscape.js, was developed separately for data visualization in web applications.11

Other free JavaScript libraries (plugins) for graph visualization include Sigma.js and Vis.js. A few
lists and comparisons of graph visualization JavaScript libraries are available on the web.12
However, it is difficult to compare the effectiveness of visualization libraries without actual
implementations. We carried out a small comparison study with a team of graduate students by
implementing our visualization interface using multiple visualization libraries. Cytoscape.js was
clearly superior to the other visualization libraries we explored. We did not adopt D3.js (a well-
known and powerful visualization JavaScript library) or ReactFlow as they require more low-level
programming and more coding effort to realize graph visualizations of comparable aesthetics and
functionality.

We can recommend Cytoscape.js for implementing graph visualization interfaces for digital
heritage and digital humanities system interfaces, and knowledge graph systems in general. The
basic graph visualization design is specified as attribute-value pairs (i.e., parameters) in a
Cytoscape stylesheet in JSON format. A comprehensive set of JavaScript functions are available to
add, remove, retrieve, filter, position, count, and in general, manage the nodes and links, as well as
respond to mouse/tap events on graph elements.

KNOWLEDGE GRAPH VISUALIZATION INTERFACES—OVERVIEW & SURVEY

This section discusses the main characteristics of knowledge graph visualization interfaces, and
how they are different from other kinds of graph visualizations. Existing knowledge graph
visualization interfaces are reviewed.

Most of the graph visualizations seen on the web are standalone visualizations where the whole
dataset is loaded onto the user’s web browser memory space. In contrast, a knowledge graph
system stores the dataset in a graph database management system, and only a relatively small
subset of the graph (retrieved by a search query) is displayed or visualized on the interface. Thus,
the interface needs to offer user search functions to retrieve a subset of nodes and links of
appropriate size to display. But how big is too big to display as a readable graph visualization?

In a survey of graph visualization techniques, von Landesberger et al. found no standard definition
of small versus large graphs except that large graphs were expected to look cluttered, take a long
time to plot the visualization, and may exceed RAM memory.13 Yoghourdjian et al. carried out a
comprehensive survey of 152 user studies and evaluations of graph visualizations.14 They pointed
out that what is considered “large” or “complex” depends on a few factors including data
complexity, visual complexity, and the technology used. Huang et al. pointed out that other factors
affect the cognitive load of graph visualizations, including domain complexity, task complexity,
demographic complexity, and time pressure.15

https://js.cytoscape.org/
http://sigmajs.org/
https://visjs.org/
https://d3js.org/
https://reactflow.dev/
https://www.json.org/json-en.html

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 7
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

Based on the graph sizes (number of nodes) used in the user studies reviewed, Yoghourdjian et al.
proposed the following size categories of graph visualizations:16

1. Small: 20 nodes or less (used by 41% of the 152 studies reviewed)
2. Medium: 21 to 50 nodes (33% of the studies)
3. Large: 51 to 200 nodes (37%)
4. Very large: more than 200 nodes (22%)

The percentages do not add up to 100% because some studies made use of multiple-sized graphs.
While 80% of the studies used graphs of 100 nodes or fewer, 74% used graphs with 200 or fewer
nodes. Of the studies that made use of very large graphs of more than 200 nodes, 70% offered
interaction and aggregation functions to display a smaller graph for user examination.

The link density of a graph is an important factor for its readability. Graph density is the number
of links in the graph, divided by the maximum possible number of links between every pair of
nodes.17 In Yoghourdjian et al.’s survey, all the studies that made use of graphs with more than 50
nodes used sparse graphs with a link density of less than 10%.18

The above graph size classification by Yoghourdjian et al. is generally in line with our own
experience. Our knowledge graph visualizations have the following characteristics that have
implications for the readability of different graph sizes:

1. All node labels and link labels are displayed on the graph visualization. The node labels are
relatively long and can run to three lines, with a maximum width of 180 pixels.

2. The graph visualization is not bounded by the display canvas (or viewport): the graph
display can “burst the seams” and extend beyond the display canvas, which will require the
user to pan the display canvas (by dragging the mouse anywhere in the canvas) to bring an
off screen part of the graph into view.

3. The interface is assumed to be displayed on laptop or notebook computers or tablets (iPad
or Android tablets). Mobile phone screens are generally too small for graph visualizations.

With these caveats, we have found that graphs of 50 nodes or less are comfortable for users to
understand and accomplish information tasks. Graph sizes between 51 to 100 nodes are
manageable, but it is desirable to offer a filter menu for the user to reduce the number of nodes or
links. Graphs of 101 to 150 nodes are manageable for experienced users, who know how to
interact with the graph to extract desired information or to visually analyze the graph. We would
consider graphs of more than 150 nodes to be unmanageable.

The graphs displayed in our knowledge graph visualizations are very sparse, with a typical link
density of 3% (for undirected graphs). A better sense of how dense a graph is can be gained by
calculating the average number of links per node, sometimes referred to as linear link density. The
linear link density of our graphs range between 1 and 1.5 (i.e., about an equal number of nodes
and links).

Graphs can also be categorized into static graphs and dynamic graphs that have a temporal
dimension, sometimes called time-dependent or time-varying graphs.19 The focus of this paper is
on static graphs.

As mentioned earlier, digital heritage system interfaces are generally similar to digital library
interfaces in displaying search results as a list of metadata records, possibly with an

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 8
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

accompanying illustrative image (e.g., Europeana, Hungarian National Digital Archive, Auckland
Museum, and National Archives of Singapore). There are a few knowledge graph visualization
interfaces that have been implemented for digital heritage and digital humanities content. Most of
the graph visualizations are simple and plain, without much effort put into their design and
implementation. The focus of these projects was often on the ontology design and the automatic
extraction of information from text to populate the ontology.

The Digital Humanities Platform of Shanghai Library has a knowledge graph interface to visualize
relations between historical figures in modern Chinese history (see fig. 3). The graph presents a
person’s relationship with other people, the person’s works, historical events he or she was
involved in, and the events’ locations. Information on each historical figure is assigned to the
person node representing the figure and displayed in a text display panel when the node is
selected. Different colors are used to signal different types of entities. As illustration, figure 3
presents a knowledge graph centered on Yuan Shikai (袁世凱), a famous Chinese army leader and
the first president of the Republic of China. The graph shows his relation to other persons
(represented as blue nodes), works (yellow nodes), and historical events (red nodes). The right
panel gives his biodata (i.e., name, birth and death years, birthplace, gender, and ethnicity). The
bottom part of the right panel offers filters for different kinds of relationships: kinship, friendship
and others shown as blue buttons; collaborations shown as a yellow button; and relationship with
fellow provincials shown as a green button.

The Malaysia Henghua Personalities system stores records of 85 historical figures who were
active in the Malaysian Chinese political, business, cultural, and artistic circles. The knowledge
graph represents relationships between individuals, organizations, and events.20 Figure 4 shows a
graph centered on Lin Jinshu (a prominent businessman), with links to other persons (yellow
nodes) and organizations (blue nodes). When a node is clicked (i.e., selected), information on all
the links to other persons and organizations is displayed in the right panel. The left panel offers
drop-down menus to select an individual, an organization, a relationship type, and time period
(start and end years) as parameters for a search. The graph visualization design is simple, with
different colored nodes.

The Universal Type Digital Humanities Research Platform on Chinese Ancient Books presents
information based on a special Ming Dynasty collection in the National Central Library of Taiwan.
The system provided the full text of each book in its collection, as well as a graph visualization of
the relationships between the figures mentioned in the book. However, the system seems to be no
longer accessible (as of January 2024).

Hyvönen and Rantala described a knowledge graph constructed from biographical data of 13,000
historical persons in Finland, linked to digital resources in museums, libraries, and archives.21
They described their effort to help users find “serendipitous semantic relations between resources
in [the] knowledge graph.” Essentially, graph operations were used to trace a path in the graph
between two specified persons. The authors made used of facets to limit the paths that could be
traced between the persons to those that reflected interesting relationships. A very simple graph
visualization (https://biografiasampo.fi/verkosto) showing links between two to four persons is
provided.

Wu, Jiang, Chen, Guo, Wei, and Yang developed the Canton Revolutionary History Knowledge
Graph to represent historical information relating to the Canton Revolution that ended China's last
imperial dynasty, the Qing dynasty, leading to the establishment of the Republic of China.22 The

https://www.europeana.eu/en
https://en.mandadb.hu/
https://www.aucklandmuseum.com/
https://www.aucklandmuseum.com/
https://www.nas.gov.sg/archivesonline/
https://dhc.library.sh.cn/
http://gumyo-ccstwlib.ccstw.nccu.edu.tw/s/malaysiaperson/page/knowledgegraph
https://biografiasampo.fi/verkosto

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 9
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

knowledge graph served as an interface layer above the Canton Canon Database (digital library of
historical and archival materials) to guide users to retrieve relevant documents in the digital
library. Unfortunately, the system is no longer accessible (as of June 2023).

The Song and Yuan Xuean Knowledge Graph System developed by the Digital Humanities
Research Center of Peking University represents relations between Confucian scholars in the Song
and Yuan dynasty, and their works, time, and place. The Dunhuang Grotto Knowledge Graph
System developed by the Digital Humanities Research Center of Wuhan University represents
ontology data related to cultural treasures at the Dunhuang Mogao Grottoes (also known as the
Caves of the Thousand Buddhas).23 The knowledge graph covers data related to the grottoes,
murals, sculptures, manuscripts, photographs, models, and research publications.

Figure 3. The graph visualization interface of the Digital Humanities Platform of Shanghai Library.

https://syxa.pkudh.org/semantic

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 10
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

Figure 4. The graph visualization interface of the Malaysia Henghua Personalities system.

Most of the papers on the construction of knowledge graphs for cultural heritage resources have
focused on text mining and entity-relation extraction techniques. Dou, Qin, Jin, and Li described
the development of a knowledge graph to integrate intangible cultural heritage resources across
many websites in China, using text mining and deep learning approaches.24 Ellul, Azzopardi, and
Abela described the construction of a knowledge graph of historical notarial manuscripts called
NotaryPedia, and their efforts in entity-relation extraction from medieval Latin texts.25

We did not come across papers that discuss the design of knowledge graph interfaces and graph
visualizations to support user browsing, information integration, and analysis of digital heritage
and digital humanities resources.

KNOWLEDGE GRAPH, INTERFACE, AND GRAPH VISUALIZATION—DESIGN ISSUES AND
RECOMMENDATIONS

This section is the heart of the paper, where we discuss the design of the knowledge graph, the
web interface, and the graph visualization. A user study involving 20 participants who were asked
to use the Zubir Said knowledge graph to obtain relational information to answer factual
questions was completed. A second part of the user study asking the users to outline a narrative
on a topic related to the knowledge graph is in progress. A separate paper will report on the user
study in detail. However, the design recommendations offered in this section will take into
consideration lessons learned from the user study.

Knowledge Graph and Graph Database Design

The graph database is the heart of the system, and the knowledge graph is the information content
of the graph database. They determine the structure (topology) and semantic content of the graph
visualization. This section presents an overview of the knowledge graph and database design,
highlighting design decisions that substantially impact the graph visualization.

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 11
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

In a Neo4j graph database, a node can represent a class or a class instance (i.e., entity), and a
directed link represents a relationship instance. Nodes are assigned zero, one, or more LABELS,
and links are assigned one TYPE. We use the uppercase LABEL and TYPE to distinguish these
Neo4j concepts from rdfs:label and rdf:type in the RDF/OWL2 model. Note that Neo4j node LABEL
can be used in the same way as Class in RDF/OWL2, while link TYPE is equivalent to
owl:ObjectProperty. In addition to the built-in LABELs and TYPEs specified for nodes and links
respectively, we have found it useful to add a separate type property in all nodes and links. This
allows us to enter the most specific class or relation in the type attribute, and the top-level class or
relation in the built-in node LABEL and link TYPE. Here is an example concept-relation-concept
triple specified in Neo4j Cypher language:

(:PERSON {id: 'ZubirSaid', label: 'Zubir Said', type: 'Composer'})

 –[:CREATE {type: 'compose'}]->

[:CREATIVE_WORK {id: 'MajulahSingapura', label: 'Majulah Singapura',

type: 'National_Anthem'}]

This statement, in effect, “draws” a graph path using a text language. Text in parenthesis indicates
a node and its properties, and text in square brackets with an arrow indicates a link and
associated properties. The Cypher statement specifies that PERSON:ZubirSaid CREATE
CREATIVE_WORK:MajulahSingapura. PERSON is the LABEL (i.e., Class) for the first node. We also
add a type attribute to the PERSON node with the more specific Composer class. Similarly, the link
TYPE is CREATE, to which we add a more specific type attribute with the value compose. As the
Neo4j database does not have a built-in inference engine to perform inferencing with the
SubClassOf relation, storing both the top class and the most specific class in the node gives us the
option to specify either the most specific class/relation or the top-level class/relation in graph
queries and pattern matching operations. The example triple also highlights that all the nodes in
our knowledge graphs have three mandatory attributes id, label, and type, and a mandatory type
attribute for all links.

We initially modeled the Zubir Said knowledge graph as an ontology in OWL2 Description Logic
language, using the TopBraid Composer software. The ontology was then exported to Turtle
format, converted into a Microsoft Excel file, and then imported into a Microsoft Access database.
The Microsoft Access database was useful in enforcing referential integrity, ensuring that links
from a node to other nodes (entities, concepts, classes) are linking already existing nodes.
However, the data in a Microsoft Access database cannot be uploaded directly to a Neo4j database.
The database tables must be exported to CSV files; and Neo4j Cypher scripts must be written to
upload and map the data to the nodes and links in the graph database.

Though Microsoft Access is a powerful desktop database application, we found it difficult to use
the software interface for data entry, even with views and data entry forms to support the task.
We have since transferred the CSV files to Google Drive, and we now use Google Sheets for data
entry, which is the approach we recommend. To check for referential integrity, we use the
VLookup formula to lookup corresponding values in another Google Sheet. During data upload to
the graph database, we also use Neo4j Cypher queries to check that the links refer to existing
nodes. We have found that spreadsheets are what digital humanities researchers are comfortable
with, both for data modeling and data entry. It is especially convenient for collaborative projects
where collaborators from multiple locations contribute data to the project. Google Drive’s access
control features are useful in controlling different types of access, and the file version history and
cell edit history functions make it possible to review edits and recover an earlier version of the
spreadsheet. Google Sheets has a publish-to-csv function26 that dynamically converts a

https://www.w3.org/TR/owl2-overview/
https://www.topquadrant.com/products/topbraid-composer/

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 12
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

spreadsheet to a CSV file at a specified URL. This makes it possible to submit a Cypher script to a
Neo4j database to retrieve the CSV file from the specified URL for upload to the database.

For a complex dataset with several types of entities and relations, as well as complex relationship
patterns, we recommend that the knowledge graph be first designed as an ontology using an
ontology editor and then converted to a labeled property graph when the design is stable. This is
especially useful if the dataset is not yet collected and the data structure can be designed from
scratch, as opposed to a large dataset that is already stored in spreadsheets. As the Zubir Said
personal archive contains many types of documents, including music notations of songs,
photographs, letters, personal documents (e.g., passport) and audiovisual materials (e.g., tapes,
vinyl records), we imported the following existing ontologies into the Zubir Said ontology: Music
Ontology (modelled after FRBR), Schema.org, DBpedia, CIDOC-CRM, Biographical Ontology, IPTC
Photo Metadata Standard 2019.1, Simple Event Model, and Dublin Core Terms.

It soon became obvious that the ontology was too complex for users to browse, and some
information such as namespace URIs will just mystify the user. As the imported ontologies overlap
and some classes (e.g., Person) occur in multiple ontologies, type links from entities to multiple
Person classes in different imported ontologies will also confuse the user. The complete FRBR
structure when applied to music and performance is too complicated for users, as they have to
traverse many links to get from the MusicalWork to Expression (music score), to perhaps another
arrangement of the music score, to Performance, to Sound or VideoRecording, to Manifestation
(perhaps a published DVD), and finally to Item to access the AudioFile, VideoFile, ImageFile, PDF
file, or webpage. To simplify the structure, we dropped Manifestation nodes, Sound and
VideoRecording, and instead link the Expression nodes (i.e., music score) directly to the VideoFile
and AudioFile nodes. Initially we stored the hyperlinks to digital files on the Item nodes (including
the subclasses VideoFile and AudioFile), but decided to place them also in the Expression nodes so
that the user can access the digital files without having to traverse or expand more links to get to
Item.

Node and link labels to display in the graph visualization need to be carefully considered. Node
labels are decided when the knowledge graph is constructed. However, link labels are usually
relation types possibly imported from another ontology. For example, in the FRBR framework and
Music Ontology, the relations realization and manifestation are mystifying to the casual user. In
this project, we display score instead of realization as the relation usually points to a node of type
Score.

Finally, too many links in a knowledge graph, especially crisscrossing links, will result in a
cluttered visualization that is difficult to read. Although all nodes should have at least one link to
another node, links (and the semantic relations they represent) should be added with a clear idea
of how they will help the user’s understanding, keeping in mind other links in the node
neighborhood. We have found it useful to visualize the neighborhood of the linked nodes to check
whether the graph is too cluttered.

Web Interface—Overall Structure

The web interface is expected to contain four main parts:

1. A search menu panel—listing canned queries, a keyword search box, and other means for
the user to specify a query or node type to retrieve;

2. A graph visualization canvas—to display search results as a graph visualization;

http://musicontology.com/
http://musicontology.com/
https://cdn.ifla.org/wp-content/uploads/2019/05/assets/cataloguing/frbr/frbr_2008.pdf

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 13
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

3. One or more text display panels—to display text, including the properties associated with a
selected (i.e., clicked) node, as well as search results in text format; and

4. One or more filter menus—to allow the user to specify constraints, to reduce the set of
nodes and links in the display.

Figures 5 and 6 show two web interface structures. The ZubirSaid.sg interface (see fig. 5) shows
the graph visualization canvas occupying most of the screen, with a pop-up text display box to
display attributes of a selected node and a sliding panel on the right offering node/link filter
options. A simple menu panel is placed on the left. The Polyglot Medicine interface (see fig. 6)
shows a smaller graph visualization panel occupying a less prominent location (but with the
option to open fullscreen). A main text panel (above the graph visualization) displays properties of
a selected node, but tabbed boxes on the right display linked (related) nodes. The search menu
panel on the left is currently partially hidden, but slides open on mouse-over.

Figure 5. ZubirSaid.sg web interface showing the parts of the interface: search menu panel (left),
graph visualization canvas (center), pop-up text display panel (draggable), and filter menu panel

(sliding from the right).

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 14
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

Figure 6. Polyglot Medicine web interface, showing information for one drug node in the main text
panel, related nodes in tabbed text panels, a graph visualization, and a menu panel on the left

(currently hidden, but slides into view on mouse-over).

Search Menu Panel

The search menu panels for the three web interfaces are shown in figure 7. The design of a search
menu is linked to the design of the search queries, which depends on the application purpose of
the system and the user needs/tasks that it purports to support. Most of the queries, including
canned search queries associated with appropriately labeled buttons, will involve graph pattern
matching (i.e., matching both nodes and links). They must be carefully crafted to retrieve a
meaningful subgraph for display, but not too many nodes as to overwhelm the user. Crafting a
query often involves deciding on the node types to display, the number of links (path length) to
traverse (single link is usually the minimum), and the types of links to traverse. The user may
supply one or more parameters to be incorporated in a graph query.

There are three main types of queries that can be offered in the search menu:

1. Thematic queries—these are usually canned queries that the user can execute by clicking
on the associated buttons. Thematic queries are usually focused on particular resource
genres such as photographs and letters, or particular topics, or types of social network.

2. Ego-centric or entity-centric subgraphs—for example, a subgraph centered on the person
Zubir Said or the composition Majulah Singapura. The path length (i.e., number of links) of
the related nodes to display will determine how many nodes are retrieved. A pulldown
menu can list all the persons or entities for the user to select one as a parameter to be
incorporated in a graph query. If there are too many entities to list in a pulldown menu, a
keyword search box is needed to shortlist a smaller number of matching entities for the
user to select. This is illustrated in the search menu for Polyglot Medicine (see fig. 7, right-

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 15
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

hand panel). Here, the keyword root (plant part) matches several types of root. Selecting
Fibrous root retrieves five Chinese drugs for the user to select. The search menu of
SingPioneers.sg (see fig. 7, middle panel) shows how checkboxes can be used to specify the
link types to use for ego-centric searches.

3. Keyword search box—allows the user to enter keywords to retrieve a set of records
(nodes) to display. In the ZubirSaid.sg interface, the keyword search retrieves individual
nodes without links. This is so the user will not be confused about which nodes match the
keyword.

Figure 7. Search menu panels from ZubirSaid.sg, SingPioneers.sg, and Polyglot Medicine.

ZubirSaid.sg

SingPioneers.sg

Polyglot Medicine

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 16
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

There are other types of advanced graph queries that can be executed on a Neo4j database, based
on graph pattern matching, graph traversal, and social network analysis.

The graphs retrieved and displayed by these queries are just starter graphs. The user can interact
with the graph display and expand individual nodes with neighbor nodes that are linked to it.
Submitting multiple queries (by clicking on multiple buttons) adds and merges multiple
subgraphs to form a combined graph in the graph visualization. This allows the user to examine
possible links between multiple subgraphs. This is different from typical search engine and
database interfaces, where submitting a new query will generate a new search result display.

Graph Visualization Design
The graph visualization is what makes this interface special. As the graph visualization presents
the search result of a graph query, the graph visualization should include text labels for nodes and
links. Users are expected to read the text labels to figure out what entities/concepts/resources the
nodes and links represent. The text labels play the same role as document titles in a bibliographic
retrieval system. This is different from graph visualizations of large networks without text labels.
Our knowledge graph displays are expected to contain fewer than 150 nodes, as we found that
graphs with more than 150 nodes are unmanageable for information tasks.

Taylor and Rodgers provided a systematic treatment of aesthetic design principles for graph
visualization, based on graphical design principles.27 This section will focus on the following graph
design elements: size of canvas display, node design, link design, use of icons, and layout
algorithms (and their parameters).

The graph display canvas is sized relative to the size of the browser window so that users with big
screens can display a big graph. A minimum size is specified so that on small devices the display
canvas does not become too small (the user may have to scroll horizontally to view the rest of the
canvas). We adopted a min-height of 400px and a min-width of 600px. Admittedly, graph
visualization does not work well on small mobile phone screens; a text-based interface is
recommended for such screens.

The design attributes of the nodes and the links (arrows) need particular attention. Different node
designs are used to distinguish between the entity types that they represent. Design attributes for
graph nodes include shape, size, color, the border of the shape, and display of node label.
Important entity types can be made more prominent by using unusual shapes (e.g., octagon), a
bigger size, and more saturated colors. Border colors and their attributes (e.g., thickness and type
of line) can be used to indicate special attributes of the entity represented by the node.

Node design specifications for ZubirSaid.sg are as follows:

• Shape—ellipse (oval) as the default shape for the nodes. Different shapes are used for
different classes; for example, octagon shape is used for Musical Work and rounded
rectangle (like a picture frame) for Person. We limited the number of shapes used, as many
different shapes make it more difficult to pick out a particular shape.

• Color—colors with lower saturation for the node background color (e.g., color saturation
80% and lightness 90% in the HSL representation). We recommend using the HSL (hue,
saturation, lightness) color representation as it is easier to fine-tune the light/dark and
saturation values of a color. Again, we limited the number of colors used, as too many
colors are distracting. Each color is assigned to a group of classes (or a top-level class),
rather than a different color for every class.

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 17
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

• Node labels—more space for displaying node labels, with a maximum width of 180 pixels
and allowing the text to wrap around to three lines. This is to help the user to make sense
of the resources represented by the nodes and links.

• Photographs on nodes—we considered displaying thumbnail photographs of persons in
the nodes, but decided against it as it would slow down the response time and make the
display look cluttered.

Von Landesberger et al. pointed out that link design is important.28 Holten and Van Wijk found in
their user study that while arrows were widely used, color transitions (from color A to color B,
indicating the direction), and thickness transitions (from thick to narrow) are better.29 The design
attributes for the links include color, thickness, type of line, and type of arrowhead.

For ZubirSaid.sg, we did not use arrowheads in the graph display, as the direction of the relations
is usually clear from the context. We learned from a previous project that arrowheads are
obtrusive and distract from other graph elements such as the text labels. However, for
SingPioneers.sg and Polyglot Medicine, we found it necessary to display arrowheads to indicate
the direction of the relationship. We used a hollow vee as arrowhead (i.e., target-arrow-shape:
vee, target-arrow-fill: hollow). We found that a hollow arrowhead (as opposed to a solid
fill) makes the arrowhead less obtrusive and yet clear. As there are occasionally two or more links
between two nodes, we use a bezier curve-style for the links, so that multiple links are visible and
not superimposed.

We had initially not used icons to represent nodes, believing that icons would interfere with the
node labels. However, so many participants of the user study recommended using icons that we
reconsidered our decision. We found that colored icons do not distract from the node labels,
provided their colors are carefully adjusted to be less saturated so as not to attract too much
attention. The icons used in ZubirSaid.sg were carefully selected (from iStock.com) to be evocative
of the node type. An unexpected advantage is that the icons can be small yet clear. As the node
labels are in a different color, users can mentally filter out the text to focus on the network
topology. Thanks to the variety of high-quality icon designs in iStock.com, the icons are, we think,
quite successful in helping users to quickly grasp the type of resource represented by the node.

A useful feature in Cytoscape.js is the capability to assign a group of nodes to a parent node,
thereby clustering the group of nodes. We found this particularly useful when an entity-centric
node has many links to neighbor nodes of the same type, which can then be clustered together in
the display. This is adopted in the Polyglot Medicine graph display, as shown in figure 6. When a
main drug node is displayed, the region nodes are clustered together, as are the set of alternative
drug name nodes. We applied this clustering to the social network graph shown in figure 5. The
result of clustering letters, photographs, and music works (shown in fig. 8) makes the graph
structure clearer.

The two-dimensional layout of the graph (i.e., positioning and distribution of the nodes and links)
is an important factor affecting the readability of the visualization and allowing the user to
examine and understand the “topological structure” of the graph.30 Previous work on graph
visualization design has focused on plotting a visually pleasing layout—what von Landesberger et
al. called the “aesthetic criteria,” such as “minimizing the number of [link] crossings, minimizing
the total drawing area, and maximizing symmetries.”31 The focus of this paper is not on graph
layout algorithm, which is technical in nature. Graph layout algorithms can be guided by adjusting
user-defined parameters. So, our design decisions are at a higher level of abstraction: building on

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 18
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

existing good layout algorithms, we specify and adjust the available algorithm parameters to fine-
tune the layout.

There are many types of layout algorithms. The main types are tree layouts, concentric layouts,
matrix layouts, and force-directed layouts. Our focus is on force-directed layout algorithms based
on physics simulations that balance repulsive forces between notes against attraction forces along
the links. Force-directed layout algorithms are the most common type of layout algorithm used in
graph visualizations.32 Gibson, Faith, and Vickers and Cheong and Si have provided good surveys
of force-directed graph layout algorithms.33

We adopted two force-directed layout JavaScript libraries that have worked well: Force-cola, and
fCoSE.34 fCoSE plots a good layout and attempts a different layout each time it is executed.
However, we prefer Force-cola’s dynamic layout where an animation of the layout shows how the
algorithm incrementally adjusts and improves the layout. During the animation, the user can “pull”
on particular nodes to help disentangle them and to guide the layout, as the algorithm will adjust
the position of neighbor nodes in response to the user’s node pulling. The disadvantage is that if
there are many nodes retrieved, the initial (starting) layout looks messy and daunting, and it takes
some time for the algorithm to gradually improve the layout. Our solution and recommendation is
to apply both algorithms in sequence: first apply fCoSE to plot a reasonably good layout; then
apply Force-cola to make further adjustments and provide an animation for the user to interact
with.

All graph layout algorithms have parameters that can be adjusted to modify the algorithm and the
graph layout. We recommend spreading out the graph more to improve the readability of the node
and link labels, by increasing the node repulsion force (or node spacing) and also the length of the
links (i.e., edge length).

The related issue of user-graph interaction is discussed in the next section.

https://github.com/cytoscape/cytoscape.js-cola
https://github.com/iVis-at-Bilkent/cytoscape.js-fcose

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 19
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

Figure 8. A social network centered on Zubir Said, with links to other persons via intermediate
entities (letters, photographs, music works, etc.).

Design of the User-Graph Interaction
The idea of using a graph visualization as an interface to a database or information system will be
foreign to most users. The ZubirSaid.sg system offers a video tour of the interface to demonstrate
the kinds of user-graph interactions that are possible. However, a more comprehensive help
system is probably needed.

Von Landesberger et al. categorized graph interaction functions into three types:35

1. Change to the data—whether the user action affects the data displayed;
2. Change in visual form—whether the user action affects the parameters of the visual display

or its visual representation; and
3. View interaction—including panning and zooming, “magic lenses,” or fisheye view

(distorting or changing the display to improve the readability of a small part of the graph).

We suggest another typology of user-graph interaction based on the number of nodes involved:
operations on a selected node, operations on a small set of selected nodes, and operations on the

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 20
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

whole graph displayed. This typology can be combined with von Landesberger et al.’s categories
to define nine types of interactions.

Operations on a selected node include repositioning a node by using the mouse (or finger touch)
to drag the node to a different position, thus changing the visual form. This interaction is
supported by most graph visualization software without additional coding effort. Operations on a
specific node can also change the data displayed. Our interfaces allow the user to double-click or
right-click on a node to retrieve from the database neighbor nodes that are directly linked to the
clicked node. This requires writing JavaScript code to call a function provided by the Cytoscape.js
JavaScript library to identify the ID of the clicked node, and then submitting a query (with the
node ID) to the graph database. Our interfaces also allow the user to remove a selected node from
the display by clicking on a Remove node button. A single-click on a node will display the
associated node properties (i.e., metadata) on a text display panel. This will be discussed in the
next section.

Operations on a small set of selected nodes are not yet implemented in the three interfaces under
discussion. However, in other graph visualization applications we have worked on, additional
functions have been added to allow the user to select two nodes and then request the graph
database to identify the paths (or the shortest path) in the knowledge graph from one node to the
other node. The identified paths are then added to the graph display. Another example of an
operation on a set of selected nodes is to assign the multiple selected nodes to a super-node (i.e.,
parent node) to cluster them.

Operations on the whole graph displayed include trying different graph layout algorithms, which
will change the visual form. Zooming in and out by using the mouse scroller button and panning
the display canvas (viewport) will change the graph view. We recommend setting a minimum and
maximum zoom level so that the graph does not become too small and difficult to locate in the
display canvas. We use a minZoom value of 0.5 and a maxZoom of 4. A zoom reset is also needed to
centralize the graph and to locate the graph should it disappear off the canvas and become lost in
space. In addition to the operations that change the visual form and the view, filter menus
(discussed later) allow the user to specify node types to remove from the display, thus changing
the data displayed.

The graph interactions described above are basic interactions we expect to be supported in
knowledge graph interfaces. More complex graph operations and graph queries can be coded and
linked to various node events: clicking, double-clicking, right-clicking, mouse-over, and dragging
(and the corresponding tap events on touch surfaces).

Text Display Panel

In the ZubirSaid.sg interface, a text display panel (info box) pops up when the user clicks on a node
or a link in the graph display. This info box is important for displaying properties (metadata)
associated with a node or link. As figure 9 illustrates, the info box also displays thumbnail images
and hyperlinks when such information is stored in the node. Clicking on a thumbnail displays the
corresponding high-resolution image. Clicking on a hyperlink displays an external webpage or a
resource in the collection. Buttons are also provided in the info box to perform operations on the
node. Currently two buttons are provided for removing the node from the display or expanding
the node with neighbor nodes. The info box can be dragged and repositioned and also resized.

In the ZubirSaid.sg interface, the graph visualization takes center stage and is the primary display.
The Polyglot Medicine interface takes a balanced approach of having both graph visualization and

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 21
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

text display (see fig. 6). The main text panel (in the center of the screen) displays properties for
the main node in the graph display. The tabbed text panels on the right display information of the
linked or neighbor nodes. The tab labels indicate the node type of the nodes displayed in each
panel.

Figure 9. Graph visualization of photograph nodes and persons shown in the photographs.

Filter Menus
A filter menu is displayed on a sliding panel when the graph size exceeds 50 nodes (see fig. 10).
We found in our user study that users are quite familiar with such filter menus, and some users
spent a considerable amount of time working on it to control the nodes displayed.

Our user study identified two unanticipated issues:

1. The filter menu displays both a node type filter and a link type filter. They interact in a way
that users do not understand. A link cannot display independently of the two nodes that the
link connects: a link will display only if the connected nodes are visible. For example, a
spouse relation links two Person nodes. So, if the Person node type has been unchecked by
the user and all Person nodes removed by the node filter, then the spouse relation will not
display even if the spouse relation type is checked (selected) in the link type menu.

2. The node filter menu lists the node types as a flat list for the user to check/uncheck,
without showing the class hierarchy. As the most specific class is assigned to each node, a
node can be tagged as either Composer or Person, but not both. Users do not realize that
Composer, Government_official, Minister, Musician, Person, and President listed in the filter
menu are mutually exclusive. So, unchecking Composer but leaving Person checked means
that composer Zubir Said will not appear in the graph display, even though Composer is a
subclass of Person.

To avoid these types of confusion, we recommend that the interface offer just the node type filter.
If a link type filter is desirable, then either the node type filter or link type filter should be active at
any one time. For the Polyglot Medicine interface, we offer a short node type filter as part of the

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 22
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

menu bar of the graph display panel (see fig. 6). To avoid confusion from listing node types at
different levels of the Class hierarchy, we recommend listing just the top-level classes in the filter
menu.

Figure 10. Filter menus for node types and link types.

CONCLUSION

We have proposed a knowledge graph visualization interface as a new type of interface for digital
heritage collections and, more generally, digital humanities-related datasets. It provides more
support for users to study connections between resources (entities, concepts, and Web resources)
and relationship structures—to facilitate browsing by navigating semantic links, information
integration, and synthesis of a narrative understanding of an issue or topic. We have discussed the
main issues in developing such an interface and offered recommendations based on our
development experience as well as lessons learned from a small user study.

An interface design is not skin-deep: it must be supported by the underlying data and knowledge
organization as well as the full stack of technology. In our system implementation, we have opted
for lightweight and relatively inexpensive technologies that are effective, productive, and have
enabled us to deliver good knowledge graph systems with a reasonable amount of effort and cost.
We have recommended using the labeled property graph model for knowledge graph design, as a
lightweight alternative to RDF/OWL2, and a graph database management system (available as a
cloud service) that is based on this model. We have highlighted design issues in the graph
visualization, as well as design issues in the knowledge graph, database, and web interface that
have implications for the graph visualization and user interaction. We have also outlined the

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 23
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

technologies used in the workflow—starting with Google Sheets as the main data store for data
entry, and Neo4j graph database management for search and analytic functions.

We believe that much more can be accomplished with knowledge graph and graph visualization
technologies. Future enhancements to our interfaces include more advanced graph operations as
well as graph analysis functions—for example, to trace relationship paths between two specified
persons or entities, to identify pairs of entities with a specified relationship path between them
(using graph pattern matching), as well as to identify constellations of entities participating in a
particular relationship structure. Our ongoing work in developing knowledge graph applications
include visualization of the argument structure of research papers
(https://kgraph.sg/argstructure/demo1.html) and visualization of research results summarized
in literature reviews (https://kgraph.sg/litreview/). These require more structured graph
visualizations (with more precise placement of nodes) to help users understand the argument
structure and compare research results across papers.

ENDNOTES

1 E. W. Schneider, “Course Modularization Applied: The Interface System and its Implications for
Sequence Control and Data Analysis” (paper presented at the meeting of the Association for
the Development of Instructional Systems (ADIS), Chicago, IL, April 1972),
https://files.eric.ed.gov/fulltext/ED088424.pdf.

2 “How Google's Knowledge Graph Works,” Google,
https://support.google.com/knowledgepanel/answer/9787176?hl=en; Amit Singhal,
“Introducing the Knowledge Graph: Things, Not Strings,” Google (blog), May 16, 2012,
https://blog.google/products/search/introducing-knowledge-graph-things-not/.

3 Michael K. Bergman, “A Common Sense View of Knowledge Graphs,” Adaptive Information,
Adaptive Innovation, Adaptive Infrastructure (blog), July 1, 2019,
https://www.mkbergman.com/2244/a-common-sense-view-of-knowledge-graphs/; Aidan
Hogan et al., Knowledge Graphs, Synthesis Lectures on Data, Semantics, and Knowledge, no. 22
(Berlin: Springer, 2021), https://doi.org/10.2200/S01125ED1V01Y202109DSK022.

4 Lisa Ehrlinger and Wolfram Wöß. “Towards a Definition of Knowledge Graphs,” (presentation in
Posters and Demos Track at 12th International Conference on Semantic Systems -
SEMANTiCS2016 and the 1st International Workshop on Semantic Change & Evolving
Semantics (SuCCESS’16), Leipzig, Germany, September 13–14, 2016),
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1054.8298&rep=rep1&type=pdf.

5 Jesús Barrasa, “RDF Triple Stores Vs. Labeled Property Graphs: What’s The Difference?” (paper
presented at GraphConnect, San Francisco, CA, October 2016), Neo4j (blog), 2017,
https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/; Kevin Feeney,
“Graph Fundamentals—Part 2: Labelled Property Graphs,” Medium, TerminusDB Community
(blog), 2019, https://medium.com/terminusdb/graph-fundamentals-part-2-labelled-
property-graphs-ba9a8edb5dfe.

6 “Defining N-Ary Relations on the Semantic Web: W3C Working Group Note,” World Wide Web
Consortium, April 12, 2006, https://www.w3.org/TR/swbp-n-aryRelations/.

https://kgraph.sg/argstructure/demo1.html
https://kgraph.sg/litreview/
https://files.eric.ed.gov/fulltext/ED088424.pdf
https://support.google.com/knowledgepanel/answer/9787176?hl=en
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.mkbergman.com/2244/a-common-sense-view-of-knowledge-graphs/
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1054.8298&rep=rep1&type=pdf
https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/
https://medium.com/terminusdb/graph-fundamentals-part-2-labelled-property-graphs-ba9a8edb5dfe
https://medium.com/terminusdb/graph-fundamentals-part-2-labelled-property-graphs-ba9a8edb5dfe
https://www.w3.org/TR/swbp-n-aryRelations/

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 24
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

7 However, Neo4j recently introduced node property existence constraints in the enterprise
version of the software (see https://neo4j.com/docs/cypher-manual/current/constraints/),
which allows the developer to specify mandatory node properties.

8 “Best Graph Databases,” G2.com (blog), 2023, accessed June 2, 2023,
https://www.g2.com/categories/graph-databases; “DB-Engines Ranking of Graph DBMS,” DB-
Engines (blog), 2023, accessed June 2, 2023, https://db-
engines.com/en/ranking/graph+dbms.

9 Min Wu, “Graph Database Market Overview,” Nebula Graph (blog), 2023, accessed June 2, 2023,
https://www.nebula-graph.io/posts/graph-database-market-overview.

10 “What Is Cytoscape?,” Cytoscape Consortium, accessed January 31, 2024,
https://cytoscape.org/what_is_cytoscape.html;
Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T. Wang, Daniel Ramage,
Nada Amin, Benno Schwikowski, and Trey Ideker, “Cytoscape: A Software Environment for
Integrated Models of Biomolecular Interaction Networks,” Genome Research 13, no. 11 (2003):
2498–2504.

11 Max Franz, Christian T. Lopes, Gerardo Huck, Yue Dong, Onur Sumer, and Gary D. Bader,
“Cytoscape.js: A Graph Theory Library for Visualisation and Analysis,” Bioinformatics 32, no. 2
(2016): 309–11, https://doi.org/10.1093/bioinformatics/btv557.

12 “A Comparison of Javascript Graph/Network Visualisation Libraries,” Cylynx (blog), March 9,
2021, https://www.cylynx.io/blog/a-comparison-of-javascript-graph-network-visualisation-
libraries/; Elise Devaux, “List of Graph Visualization Libraries,” Elise Devaux (blog), May 5,
2019, https://elise-deux.medium.com/the-list-of-graph-visualization-libraries-7a7b89aab6a6.

13 Tatiana von Landesberger et al., “Visual Analysis of Large Graphs: State-of-the-Art and Future
Research Challenges,” Computer Graphics Forum 30, no. 6 (2011): 1719–49,
https://doi.org/10.1111/j.1467-8659.2011.01898.x.

14 Vahan Yoghourdjian et al., “Exploring the Limits of Complexity: A Survey of Empirical Studies on
Graph Visualisation,” Visual Informatics 2, no. 4 (2018): 264–82.

15 Weidong Huang, Peter Eades, and Seok-Hee Hong, “Measuring Effectiveness of Graph
Visualizations: A Cognitive Load Perspective,” Information Visualization 8, no. 3 (2009): 139–
52.

16 Yoghourdjian et al., “Exploring the Limits of Complexity,” 264–82.

17 The maximum possible links for a directed graph is calculated with the formula n * (n−1),
where n is the number of nodes. This number is halved for an undirected graph, i.e., where the
links do not have a direction.

18 Yoghourdjian et al., “Exploring the Limits of Complexity,” 264–82.

19 Landesberger et al., “Visual Analysis of Large Graphs,” 1719–49.

https://neo4j.com/docs/cypher-manual/current/constraints/
https://www.g2.com/categories/graph-databases
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://www.nebula-graph.io/posts/graph-database-market-overview
https://cytoscape.org/what_is_cytoscape.html
https://doi.org/10.1093/bioinformatics/btv557
https://www.cylynx.io/blog/a-comparison-of-javascript-graph-network-visualisation-libraries/
https://www.cylynx.io/blog/a-comparison-of-javascript-graph-network-visualisation-libraries/
https://elise-deux.medium.com/the-list-of-graph-visualization-libraries-7a7b89aab6a6
https://doi.org/10.1111/j.1467-8659.2011.01898.x

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 25
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

20 Chih-Ming Chen et al., “Development and Application of a Digital Humanities Research Platform
for Biographies of Malaysian Personalities,” The Electronic Library 40, no. 4 (2022): 313–37,
https://doi.org/10.1108/EL-01-2022-0007.

21 Eero Hyvönen and Heikki Rantala, “Knowledge-Based Relation Discovery in Cultural Heritage
Knowledge Graphs,” in Digital Humanities in Nordic Countries: Proceedings of the Digital
Humanities in the Nordic Countries 4th Conference (CEUR-WS.org, 2019),
https://helda.helsinki.fi/bitstream/handle/10138/304630/21_paper.pdf?sequence=1.

22 Junchao Wu et al., “The Canton Canon Digital Library Based on Knowledge Graph—Taking the
Revolutionary Archives of Canton in the Republic of China as an Example,” in 10th
International Conference on Educational and Information Technology (ICEIT) (Piscataway, NJ:
IEEE, 2021), 171–79, https://doi.org/10.1109/ICEIT51700.2021.9375538.

23 Xiaoguang Wang, Xu Tan, and Shengping Xia, “Dunhuang Wisdom Data Research and Practice”
(in Chinese), Digital Humanities in China, no. 4 (2020),
https://www.dhcn.cn/site/works/dhjournal/202004/6048.html.

24 Jinhua Dou, Jingyan Qin, Zanxia Jin, and Zhuang Li, “Knowledge Graph Based on Domain
Ontology and Natural Language Processing Technology for Chinese Intangible Cultural
Heritage,” Journal of Visual Languages & Computing 48 (2018): 19–28.

25 Charlene Ellul, Joel Azzopardi, and Charlie Abela, “NotaryPedia: A Knowledge Graph of Historical
Notarial Manuscripts,” in On the Move to Meaningful Internet Systems: OTM 2019 Conferences
(Berlin: Springer, 2019), https://doi.org/10.1007/978-3-030-33246-4_39.

26 In the pulldown menu File>Share>Publish to web.

27 Martyn Taylor and Peter Rodgers, “Applying Graphical Design Techniques to Graph
Visualisation,” in Ninth International Conference on Information Visualisation (IV'05)
(Piscataway, NJ: IEEE, 2005), 651–56.

28 Landesberger et al., “Visual Analysis of Large Graphs,” 1719–49.

29 Danny Holten and Jarke J. van Wijk, “A User Study on Visualizing Directed Edges in Graphs,” in
Proceedings of the International Conference on Human Factors in Computing Systems, Boston
(New York: ACM, 2009), 2299–2308.

30 Helen Gibson, Joe Faith, and Paul Vickers, “A Survey of Two-Dimensional Graph Layout
Techniques for Information Visualisation,” Information Visualization 12 no. 3 (2013): 324–57.

31 Landesberger et al., “Visual Analysis of Large Graphs,” 1723.

32 Yoghourdjian et al., “Exploring the Limits of Complexity,” 264–82.

33 Gibson, Faith, and Vickers, “A Survey of Two-Dimensional Graph Layout Techniques,” 324–57;
Se-Hang Cheong and Yain-Whar Si, “Force-Directed Algorithms for Schematic Drawings and
Placement: A Survey,” Information Visualization 19, no. 1 (2019): 65–91.

34 Hasan Balci and Ugur Dogrusoz, “fCoSE: A Fast Compound Graph Layout Algorithm with
Constraint Support,” IEEE Transactions on Visualization and Computer Graphics 28, no. 12

https://doi.org/10.1108/EL-01-2022-0007
https://helda.helsinki.fi/bitstream/handle/10138/304630/21_paper.pdf?sequence=1
https://doi.org/10.1109/ICEIT51700.2021.9375538
https://www.dhcn.cn/site/works/dhjournal/202004/6048.html
https://doi.org/10.1007/978-3-030-33246-4_39

INFORMATION TECHNOLOGY AND LIBRARIES MARCH 2024

KNOWLEDGE GRAPH VISUALIZATION INTERFACE FOR DIGITAL HERITAGE COLLECTIONS 26
KHOO, TAN, NG, CHAN, STANLEY-BAKER, AND CHENG

(2022): 4582–93; Ugur Dogrusoz et al., “A Layout Algorithm for Undirected Compound
Graphs,” Information Sciences 179 (2009): 980–94.

35 Landesberger et al., “Visual Analysis of Large Graphs,” 1719–49.

	Abstract
	Introduction
	The Knowledge Graph System
	Knowledge Graph Visualization Interfaces—Overview & Survey
	Knowledge Graph, Interface, and Graph Visualization—Design Issues and Recommendations
	Knowledge Graph and Graph Database Design
	Web Interface—Overall Structure
	Search Menu Panel
	Graph Visualization Design
	Design of the User-Graph Interaction
	Text Display Panel
	Filter Menus

	Conclusion
	Endnotes

