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answer routine searches is compelling. How, we wonder, 
can we bring a bit of Google to the library world?

Google harvests vast quantities of data from the web. 
This data aggregation is obviously complex. How does 
Google make sense of it all so that it can offer search-
ers the most relevant results? Answering this question 
requires understanding what Google is doing, which 
requires a working knowledge of graph theory. We can 
then apply these lessons to library systems, make sense of 
voluminous bibliometric data, and give researchers tools 
that are as effective for them as Google is for web surfers. 
Just as web surfers want to know which sites are most 
relevant, researchers want to know which of the relevant 
results are the most reliable, the most influential, and of 
the highest quality. Can quantitative metrics help answer 
these qualitative questions?

The more deeply libraries and librarians can mine 
relationships between articles and authors and between 
subjects and institutions, the more reliable are their 
metrics. Suppose some librarians want to compare the rel-
ative influence of two authors. They might first look at the 
authors’ respective number of publications. But are those 
papers of equally high quality? They might next count all 
citations to those papers. But are the citing articles of high 
quality? Deeper still, they might assign different weights 
to each citing article using its own number of citations. 
At each step, whether realizing it or not, they are apply-
ing graph theory. With deeper knowledge of this subject, 
librarians can embrace complexity and harness it for 
research tools of powerful simplicity.

■■ PageRank and the Global Giant Graph

Indexing the web is a massive challenge. The Internet is 
a network of computer hardware resources so complex 
that no one really knows exactly how it is structured. In 
fact, researchers have resorted to conducting experiments 
to discern the structure and size of the Internet and its 
potential vulnerability to attacks. Representations of the 
data collected by these experiments are based on network 

Whenever librarians use Semantic Web services and stan-
dards for representing data, they also generate graphs, 
whether they intend to or not. Graphs are a new data 
model for libraries and librarians, and they present new 
opportunities for library services. In this paper we intro-
duce graph theory and explore its real and potential appli-
cations in the context of digital libraries. Part 1 describes 
basic concepts in graph theory and how graph theory has 
been applied by information retrieval systems such as 
Google. Part 2 discusses practical applications of graph 
theory in digital library environments. Some of the appli-
cations have been prototyped at the Los Alamos National 
Laboratory Research Library, others have been described 
in peer-reviewed journals, and still others are speculative 
in nature. The paper is intended to serve as a high-level 
tutorial to graphs in libraries.

Part 1. Introduction to Graph Theory
Complexity surrounds us, and in the twenty-first century, 
our attempts at organization and structure sometimes 
lead to more complexity. In layman’s terms, complexity 
refers to problems and objects that have many distinct but 
interrelated issues or components. There also is an inter-
disciplinary field referred to as “complex systems,” which 
investigates emergent properties, such as collective intel-
ligence.1 Emergent properties are an embodiment of the 
old adage “the whole is greater than the sum of its parts.” 
These are behaviors or characteristics of a system “where 
the parts don’t give a real sense of the whole.”2 Libraries 
reside at the nexus of these two definitions: they are cre-
ators and caretakers of complex data sets (metadata), and 
they are the source of explicit records of the complex and 
evolving intellectual and social relationships underlying 
the evolution of knowledge.

Digital libraries are complex systems. Patrons visit 
libraries hoping to find some order in complexity or to 
discover a path to new knowledge. Instead, they become 
the integration point for a complex set of systems as they 
juggle resource discovery by interacting with multiple 
systems, either overtly or via federated search, and by 
contending with multiple vendor sites to retrieve articles 
of interest.

Contrast this with Google’s simple approach to con-
tent discovery: a user enters a few terms in a single 
box, and Google returns a large list of results spanning 
the Internet, placing the most relevant results at the top 
of this list. No one would suggest using Google for all 
research needs, but its simplicity and recognized ability to 
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influence a person has in a business context. If we want 
to analyze this aspect of the network, then it makes sense 
to consider the fact that some relationships are more 
influential than others. For example, a relationship with 
the president of the company is more significant than a 
relationship with a coworker, since it is a safe assump-
tion that a direct relationship with the company leader 
will increase influence. So we assign weights to the edges 
based on who the edge connects to.

Google does something similar. All the webpages 
they track have centrality values, but Google’s weighting 
algorithm takes into account the relative importance of 
the pages that connect to a given resource. The weight-
ing algorithm bases importance on the number of links 
pointing to a page, not the page’s internal content, which 
makes it difficult for website authors to manipulate the 
system and climb the results ladder. So if a given webpage 

science, also known as graph theory. This is not 
the same network that ties all the computers on 
the Internet together, though at first glance it is 
a similar idea. Network science is a technique 
for representing the relationships between com-
ponents of a complex system.3 It uses graphs, 
which consist of nodes and edges, to represent 
these sets of relationships.

Generally speaking, a node is an actor or 
object of some sort, and an edge is a relationship 
or property. In the case of the web, universal 
resource locators (URLs) can be thought of as 
nodes, and connections between pages can be 
thought of as links or edges. This may sound 
familiar because the Semantic Web is largely 
built around the idea of graphs, where each 
pair of nodes with a connecting edge is referred 
to as a triple. In fact, Tim Berners-Lee refers to 
the Semantic Web as the Global Giant Graph—a 
place where statements of facts about things are 
published online and distinctly addressable, 
just as webpages are today.4

The Semantic Web differs from the traditional 
web in its use of ontologies that place meaning 
on the links and in the expectation that nodes 
are represented by universal resource identifiers 
(URIs) or by literal (string, integer, etc.) values, 
as shown in figure 1, where the links in a web 
graph have meaning in the Semantic Web.

Semantic Web data are a form of graph, 
so graph analysis techniques can be applied 
to semantic graphs, just as they are applied to 
representations of other complex systems, such 
as social networks, cellular metabolic networks, 
and ecological food webs. Herein lies the secret 
behind Google’s success: Google builds a graph 
representation of the data it collects. These 
graphs play a large role in determining what 
users see in response to any given query.

Google uses a graph analysis technique called 
Eigenvector centrality.5 In essence, Google calculates the 
relative importance of a given webpage as a function of 
the importance of the pages that point to it. A simpler 
centrality measure is called degree centrality. Degree cen-
trality is simply a count of the number of edges a given 
node has. In a social network, degree centrality might tell 
you how many friends a given person has. If a person 
has edges representing friendship that connect him to 
seventeen other nodes, representing other people in the 
network, then his degree value is seventeen (see figure 
2). If a person with seventeen friends has more friendship 
edges than any other person in the network, then he has 
the highest degree centrality for that network.

Eigenvector centrality expands on degree centrality. 
Consider a social network that represents the amount of 

Figure 1. A traditional Web graph is compared to a corresponding Semantic 
Web graph. Notice that replacing traditional Web links with semantic links 
facilitates a deeper understanding of how the resources are related.
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networks evidence for the evolution of metabolic pro-
cesses.7 Chemists have used networks to model reactions 
in a step-wise fashion by “editing” graphs representing 
models of molecules and their reactivity,8 and they also 
have used graphs to better comprehend phase transition 
states, such as the freezing of water or the emergence of 
superconductivity when a material is cooled.9 Economists 
have used graphs to model market trades and the effects 
of globalization.10 Infectious disease specialists have used 
networks to model the spread of disease and to evaluate 
prospective vaccination plans.11 Sociologists have mod-
eled the complex interactions of people in communities.12 
And in libraries, computer scientists have explored cita-
tion networks and coauthorship networks,13 and  they 
have developed maps of science that integrate scientific 
papers, their topics, the journals in which they appear, 
and comsumers’ usage patterns to provide a new view of 
the pursuit of science.14

Network science can make complexity more com-
prehensible by representing a subset of actors and 
relationships in a complex system as a graph. These 

has only two edges, it may still rank higher than a more 
connected page if one of the pages that links to it has a 
large number of pages pointing to it (see figure 3).

This weighted degree centrality measure is Eigenvector 
centrality, and a higher Eigenvector centrality score 
causes a page to show up closer to the top of a Google 
results set. The user never sees a graph, but this graph-
based approach to exploring a complex system (the web), 
works quite well for routine web searches.

■■ Graph Theory

Graph theory, also known as network science, has evolved 
tremendously in the last decade. For example, information 
scientists have discovered hubs in the web that connect 
large numbers of pages, and if removed, disconnect large 
portions of the network.6 Biologists have begun to explore 
cellular processes, such as metabolism, by modeling these 
processes as networks and have even found in these 

Figure 2. Friendship network

Figure 3. Node 2 ranks higher than node 1 because node 3, which connects to node 2, has more incoming links than node 1. Node 3 is 
deemed more important than node 9, which has no incoming links.
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as subgraphs, e.g., in the case where a person has two 
friends who are also mutual friends.

Small world networks have numerous highly inter-
connected subgroups called clusters. These may be 
distributed throughout the network in a regular fashion, 
with a few random connections that connect the other-
wise disconnected clusters. These random links have the 
effect of greatly reducing the path length between any two 
nodes and explain the oft-cited six degrees of separation 
that connect all people to one another. In social networks, 
agency is often described as the mechanism by which 

graphs can then be explored visually and mathematically. 
Graphs can be used to represent systems as they are, to 
extract subsets of these systems, or to discover wholly 
artificial collections of relationships between components 
of a speculative system. Data also can be represented 
as graphs when they consist of “measurements that 
are either of or from a system conceptualized as a net-
work.”15 In short, graphs offer a continuum of techniques 
for comprehending complexity and are suitable either 
for a layman with casual interest in a topic or a serious 
researcher ferreting out discrete details.

At the core of network science is the graph. As stated 
earlier, a graph is a collection of nodes and the edges that 
connect some of those nodes, together representing a set of 
actors and relationships in a type of system. Relationships 
can be unidirectional (e.g., in a social network, when the 
information flows from one person to another) or bidirec-
tional (e.g., when the information flows back and forth 
between two individuals). Relationships also can vary in 
significance and can be assigned a weight—for example, 
a person’s relationship to his or her supervisor might be 
weighted more heavily than a person’s relationship to his 
or her peers. A graph can consist of a single type of node 
(for subjects) and a single type of edge connecting those 
nodes (for predicates). These are called unipartite graphs. 
From the standpoint of graph theory, these are the easi-
est types of graphs to work with. Graphs that represent 
two relationships (bipartite) or more are typically reduced 
to unipartite graphs in the process of exploring them 
because the vast majority of techniques for evaluating 
graphs were developed for graphs that address a single 
relationship between a set of nodes.

■■ Global Properties of Graphs

There are other aspects of graphs to consider, sometimes 
referred to as “global graph properties.”16 There are 
two basic classes of networks: homogeneous networks 
and inhomogeneous networks.17 These graphs exhibit 
characteristics that may not be comprehensible by close 
examination (e.g., by examining degree centrality, node 
clustering, or paths within a graph)18 but may be appar-
ent, depending on the size and the way in which the 
graph is rendered, merely by looking at a visualization 
of the graph. In homogeneous graphs, nodes have no sig-
nificant difference between their number of connections. 
Examples include random graphs, complete graphs, and 
small world networks. In random graphs there is an equal 
probability that any two nodes will be connected (see 
figure 4), while in complete graphs (see figure 5) all nodes 
are connected with one another. Random graphs are often 
used as tools to evaluate networks that describe real sys-
tems. Complete graphs might occur in social networks 

Figure 4. A Random Graph. Any given node has an equal prob-
ability of being linked to any other node

Figure 5. A Complete Graph. All nodes are connected to all 
other nodes
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building blocks of networks.20 A three-node feedback 
motif is a set of nodes where the edges between them 
form a triangle and the edges are directional. In other 
words, node A is connected to (and might convey some 
information to) node B; node B, in turn, has the same 
relationship with node C; and node C is connected to (and 
conveys information back to) node A. In digital libraries, 
for example, if similar papers exhibit the same pattern of 
connectivity to a group of subject or keyword categories, 
motifs will make it possible to readily identify the topical 
overlap between them.

Collections of nodes that have a high degree of con-
nectivity with each other are called clusters.21 In many 
complex systems, clusters are formed by preferential 
attachment. A group of highly clustered nodes that have 
low connectivity to the larger graph is known as a clique.

While there are other aspects of graphs that can be 
explored, these four—node centrality measures, paths 
between nodes, motifs, and clustering—are accessible to 
most users and are significant in graphs representing bib-
liographic metadata and textual content. This will become 
clearer in the examples that follow.

■■ Quantitative Evaluation of Graphs

Returning now to centrality measures, two of particular 
interest in digital libraries are degree centrality and between-
ness centrality (or flow centrality). An interesting aspect of 
graphs is that, regardless of the data being represented, 
centrality measures and clustering characteristics often 
reveal important clues about the system that the data 

these random links get established. Agency refers to the 
idea that multiple, often unpredictable actions on the 
part of individuals in a network result in unanticipated 
connections between people. Examples of such actions 
are hobbies, past work experience, meeting someone new 
while on a trip to another country—pretty much anything 
that takes a person outside his or her normal social circles.

In the case of inhomogeneous graphs, not all nodes 
are created equal. One type, scale-free networks, is common 
in a variety of systems ranging from biological to techno-
logical (see figure 6. These exhibit a structure in which a 
few nodes play a central role in connecting many others. 
These hubs form as a result of preferential attachment, 
known colloquially as “the rich get richer.” Researchers 
became aware of scale-free networks as a result of 
analysis of the web when it was in its infancy. Scale-free 
networks have been documented in biology, social net-
works, and technological networks. As a result, they are 
quite important in the field of information science. Small 
world and scale-free networks are typical of complex sys-
tems that occur in nature or evolve because of emergent 
dynamic processes, in which a system self-organizes over 
time. Small world networks provide fast, reliable com-
munication between nodes, while scale-free networks are 
more fault tolerant, making them ideal for systems such 
as living cells, which are frequently challenged by the 
external environment.19

■■ Local Properties of Graphs

Below the ten-thousand-foot system-level view of networks, 
graphs can be scrutinized more closely using many other 
techniques. We will now consider four broad categories of 
local characteristics that describe networks and how they 
are, or could be, applied in digital libraries: node centrality 
measures, paths between nodes, motifs, and clustering.

Centrality measures make it possible to determine the 
importance of a given node in a network. Degree central-
ity, in its simplest form, is simply a count of the number 
of edges connected to any given node in a network: a 
node with high-degree centrality has many connections 
to other nodes compared to a typical node in the graph.

Paths make it possible to explore the connections 
between nodes. An author who is two degrees removed 
from another author—in other words, the friend of a 
friend of a friend—has a path length of 2. Researchers are 
often interested specifically in the shortest path between 
a given pair of nodes. Many other types of paths can 
be explored depending on the type of network, but in 
libraries, paths that describe the flow of ideas or com-
munication between people are most likely to be useful.

Motifs are the fundamental recurring structures that 
make up the larger graph, and they often are called the 

Figure 6. Example of a Scale-Free Coauthorship Network. A few 
nodes have many links, and most nodes have few or a single link 
to another node
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path that connects a node through other nodes back to 
itself. Within graph visualization tools, the placement of 
nodes can vary from one layout to another. What matters 
is not the pictorial representation (though this can be use-
ful), but the underlying relationships between nodes (the 
topology). Along with clustering, paths help differentiate 
motifs, which are considered to be building blocks of 
some types of complex networks.

Since bibliographic metadata represents communi-
cation in one form or another, it is often most common 
to apply social network theory to graphs. But it is also 
possible to apply various centrality measures to graphs 
that are not social and to use these to discover significant 
nodes within those graphs. In part 2 we consider various 
unipartite and bipartite graphs that might be especially 
useful for examining digital library metadata.

Part 2. Graph Theory Applications 
in Digital Libraries

Library systems, by virtue of the content they contain, 
are complex systems. Fielded searches, faceted searches, 
and full-text searches all allow users to access aspects 
of the complex system. Fielded searches leverage the 
explicit structure that has been encoded into the metadata 
describing the resources that users are ultimately trying to 
find (articles, books, etc). Full-text searches enable users 
to explore in a more free-form manner, subject of course 
to the availability of searchable text. Often, full-text search 
means the user is searching titles, abstracts, and other 
content that summarizes a resource, rather than the actual 
full text of articles and books. Even if the user is search-
ing the full content, there are relationships and aspects 
of the content that are not readily discernible through 
a full-text search. Furthermore, there is not one single, 
comprehensive digital library—many library systems live 
in the Deep Web, that is, they are databases that are not 
indexed by search engines like Google, and so users must 

describes, whether it’s coauthorship relationships or 
protein interactions in the cell of a living organism. Often 
the clusters or nodes that exhibit a higher score in some 
centrality calculation are significant in some meaningful 
way compared to other nodes.

Recall that degree centrality refers to how many edges 
a given node has. Degree centrality can vary significantly 
in strength depending on the relationships that are repre-
sented in the graph. Consider a graph of citations between 
papers. While it may be obvious to humans that the 
mostly highly cited papers will have the highest-degree 
centrality, computers have no idea what this means. It is 
still up to humans to lend a degree of comprehensibility 
to the raw calculation: in other words, to understand that 
a paper with high-degree centrality is an important paper, 
at least among the papers the graph represents.

Betweenness centrality exposes how integral a given 
node is to a network. Basically, without getting into the 
mathematics, it measures how often a node falls on the 
shortest path between other nodes. Thus, nodes with high 
betweenness centrality do not necessarily have a lot of 
edges, but they bridge disparate clusters. In an informa-
tional network, the nodes with high betweenness centrality 
are crucial to information flow, social connections, or 
collaborations. Hubs are examples of nodes with high 
betweenness centrality. The removal of a hub causes large 
portions of a network to become detached. In figure 7, the 
node labeled “Folkner, W.M.” exhibits high betweenness 
centrality, since it connects two clusters together.

A cluster coefficient expresses whether a given node 
in a network is a member of a tightly interlinked col-
lection of nodes, or clique. The cluster coefficient of an 
entire graph reveals the overall tendency for clustering in 
a graph, with higher cluster coefficients typical of small 
world graphs. In other types of graphs, clusters some-
times manifest as homophily; that is, nodes of a given type 
are highly interconnected with one another and have few 
connections with nodes of other types. In social networks, 
this is sometimes referred to as the “birds of a feather” 
effect. In a more current reference, the effect was explored 
as a function of the likelihood that someone would 
“unfriend” an acquaintance on the social networking site 
Facebook.22 In some networks (such as the Internet), clus-
ters are connected by hubs, while in others, the hub is the 
primary connecting node of other nodes.

Paths refer to the edges that connect nodes. The sim-
plest case of a path is an edge that connects two nodes 
directly. Path analysis addresses the set of edges that 
connect two nodes that are not, themselves, directly con-
nected. The shortest path, as its name implies, refers to the 
route that uses the least number of edges to connect from 
node A to node B and measures the number of edges, not 
the linear distance. Walks and paths refer to a list of nodes 
between two nodes, with walks allowing repeat visits to 
nodes, and paths not allowing them. Cycles refer to a 

Figure 7. Paths in a Coauthorship Network
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Coauthorship (Collaboration) Networks

Coauthorship (collaboration) networks are typically 
small world networks in which cross- and interdisciplin-
ary work provides the random links that connect various 
clusters (see figure 8). These graphs can be explored to 
determine which researchers are having the most influ-
ence in a given field; influence is a function of frequency 
of authorship. A prime example is the collaboration 
network graph for Paul Erdős, a highly productive 
mathematician. The popularity of his influence in aca-
demia has lead to the creation of the Erdős Number, 
which is “defined as indicating the topological distance 
in the graph depicting the co-authorship relations.”23 Liu 
et al. proposed a node analysis measure that they called 
AuthorRank, which establishes weighted directed edges 
between authors. The author’s AuthorRank value is a 
sum of the weighted edges connected to that author.24 
These networks also can be used to explore how an idea 
spreads and what opportunities may exist for future col-
laborations, as well as many other existing and potential 
relationships.

Citation Graphs

Citation graphs more strongly resemble scale-free net-
works, in which early papers in a given field tend to 
accumulate more links. Such hub papers can be cited 
hundreds or even thousands of times while most papers 
are cited far less often or not at all. Many researchers 
have explored citation graphs, though the person often 
credited with first noting the network characteristics of 
citation patterns was Dereck J. de Solla Price in 1965.25 
More recently, Mark Newman introduced the concept 
of what he calls “first mover advantage” to describe the 
preferential attachment observed in citation networks.26

search each individually. But if more of these 
systems adopted Semantic Web standards, they 
could be explored as graphs, and relationships 
between different databases would be easier to 
discern and represent to the user.

Many libraries have tried to emulate Google 
by incorporating federated search engines with a 
single search box as an interface. This copies the 
form of Google’s search engine but not its under-
lying power. To do that, libraries must enhance 
full-text searches by drawing on relationships. 
A full-text search will (hopefully) find relevant 
papers on a given topic, but a researcher often 
wants to find the best papers on that topic. To 
meet that need, libraries must harness the infor-
mation contained in relationships; otherwise 
each paper is stuck in a vacuum.

Cited references are one way to connect 
papers. For researchers and librarians alike, 
this is a familiar metric for assessing a paper’s relative 
importance. The Web of Science and Scopus are two data-
bases that perform this function. Looked at another way, 
citation counts are nothing more than degree centrality 
applied to a simple graph in which papers are nodes and 
references are edges. Thus, in the framework of graph 
theory, citation analysis is just a small sliver of a world 
of possible relationships, many of which are unexplored.

The following examples outline use case scenarios in 
which graph techniques are or could be applied to library 
data, such as bibliographic metadata, to help users find 
relationships and conduct research.

■■ Informational Graphs Intrinsic to 
Digital Library Systems

There are multiple relationships represented within and 
between metadata contained in library systems that 
can be represented as graphs and explored using graph 
techniques. Some of these, such as citation networks, are 
among the most well-studied informational networks. 
Citation networks are valued because the data describing 
them is readily accessible and because scientists study-
ing classes of networks have used them as surrogates for 
exploring scale-free networks. They are often evaluated 
as static networks (i.e., a snapshot in time) but some 
also have dynamic characteristics (e.g., they change and 
grow over time or they allow information-flow analysis). 
Techniques such as PageRank can be used to evaluate 
information when the importance of a linking resource 
is as important as the number of links to a resource. 
Multirelational networks can be developed to explore 
dynamic processes in research fields by using library data 
to provide the basic topological framework for some of 
the explorations.

Figure 8. A Coauthorship Network
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network with three types of nodes: one to represent indi-
vidual pieces of debris, a second to represent collections 
of debris that are the original object that the debris is a 
fragment of, and a third to represent conjunction events 
(near misses) between objects.

Another example of graphs being used as tools is the 
case of developing vaccination strategies to curtail the 
spread of an infectious disease.30 In this case, networks 
have been used to determine that one of the best strat-
egies for curtailing the transmission of a disease is to 
identify and vaccinate hubs, rather than to conduct mass 
vaccination campaigns.

In libraries, graphs as tools could be used to help 
researchers identify collaboration opportunities, to disam-
biguate author identities and aggregate related materials, 
to allow library staff to evaluate the academic contribu-
tion of a group of researchers (bibliometrics), and to 
explore geospatial and temporal aspects of information, 
including changes in research focus over time.

Graphs for Author Name Disambiguation

Author name disambiguation is a long-standing problem 
in libraries. Many resources have been devoted to manual 
and automatic name authority control, yet the problem 
remains unsolved. Projects such as OCLC VIAF and efforts 
to establish unique author identifiers will no doubt improve 
the situation, but many problems remain.31 Meanwhile, 
we have experimented with an approach to author name 
matching by generating multirelational graphs. Authors 

Subject–Author (Expertise) Graphs

Graphs that connect authors by subject areas 
can vary because of the granularity of subject 
headings (see figure 9). High-level subject head-
ings tend to function as hubs, but more useful 
relationships are revealed by specific subject 
headings and author-provided keywords. The 
map of science merges publications and citations 
with actual end user usage patterns captured in 
library systems and deals, in part, with categories 
of scientific research.27 It clusters publications and 
visualizes them “as a journal network that out-
lines the relationships between various scientific 
domains.” Implicit in this a model is the relation-
ship of authors to subject areas.

Institution–Topic and Nation–Topic 
(Expertise) Graphs

From a commercial or geopolitical perspective, 
graphs that represent institutional or national 
expertise can reveal valuable information for 
scientists, elected officials, and investors, par-
ticularly in networks that represent the change 
in a given organization or region’s contributions to a field 
over time. Metadata for scientific papers typically includes 
enough information to generate nodes and edges describ-
ing this. The resulting graph can reveal unexpected details, 
such as national or institutional efforts to nurture expertise 
in a given field, and the results of those efforts. The visu-
alization of this data may take the form of icons that vary 
in shape and size depending on various aspects of nodes 
in the institution-topic network. These visual representa-
tions can then be overlaid onto a map, with various visual 
aspects of the icons also affected by centrality measures 
applied to a given institution’s contributions.28

■■ Graphs as Tools

Graph representations can be used as tools to explore a 
variety of complex systems. Even systems that do not 
initially appear to manifest networks of relationships 
can often be better understood when some aspect of the 
system is represented as a graph. This approach requires 
thinking about what aspects of information needs, discov-
ery, or consumption might be represented or evaluated 
using networks. Two interesting examples from other 
fields will illustrate the point.

A 2009 paper in Acta Astronautica proposed that tech-
niques to reduce the amount of space junk in orbit around 
the earth could be evaluated using graph theory tech-
niques.29 The authors propose a dynamic multirelational 

Figure 9. A Subject–Author Graph for Stephen Hawking
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computation over time because it is typically 
so important to understanding data. Allen’s 
temporal intervals address machine reasoning 
over disparate means of recording the temporal 
aspects of events.33 Another temporal comput-
ing concept that has applicability to graphs 
is from the Memento project, which makes it 
possible for users to view prior versions of web-
pages.34 Entities in the Memento ontology can 
become predicates in triples, which in turn can 
become edges in graphs. Using graphs, time can 
be represented as a relationship between objects 
or as a distinct object within a graph. Nodes that 
connect through a temporal node may overlap, 
coincide, or co-occur. Nodes that cluster around 
time represent something important about the 
objects.

Genomic-Document and Protein-
Document Networks

Many people hoped that mapping the human 
genome would result in countless medical 
advances, but the process whereby genes mani-
fest themselves in living organisms turned out to 

be much more complex—there wasn’t just a simple map-
ping between genes and organism traits, there were other 
processes controlled by genes representing additional 
layers of complexity scientists had not anticipated. Today 
biologists apply network science to these processes to reveal 
the missing pieces of this puzzle.35 Just as the process itself 
is complex, the information needs of these researchers ben-
efit from a more sophisticated approach. Biologists often 
need to find papers that reference a given gene or protein 
sequence. And so, representing these relationships (e.g., 
article–gene) as graphs has the added benefit of making the 
digital library research data compatible with the methods 
that biologists already use to document what they know 
about these processes. Although this is a specialized type 
of graph, a similar approach might be valuable to research-
ers in a number of scientific disciplines, including materials 
science, astrophysics, and environmental sciences.

Graphs of Omission

One of the less obvious capabilities of network science is 
to make predictions about complex systems by looking 
for missing nodes in graphs.36 This has many applications: 
for example, identifying a hub in the metabolic processes 
of bacteria can yield new targets for antibiotics, but it is 
vital to know that interrupting the enzyme that serves as 
that hub will effectively kill the organism. Making predic-
tions about the evolution of research by identifying areas 
for cross-disciplinary collaboration or areas where little 
work has been done—enabling a researcher to leverage 

are the primary nodes of interest, but relationships such as 
topic areas, titles, dates, and even soundex representations 
of names also are represented. As one would expect, pho-
netically similar names cluster around particular soundex 
representations. Shared coauthorship patterns and shared 
topic areas can reveal that two different names are for 
the same author as, for example, when a person’s name 
changes after marriage (see figure 10).

Graphs for Title or Citation Deduplication

String edit distance involves counting the number of 
changes that would need to be made to one string to 
convert it to another, and it is one of the most com-
mon approaches to deduplicating titles, citations, and 
author names. Multirelational graphs, in which titles are 
linked to authors, publication dates, and subjects, result 
in subgraphs that appear virtually identical when two 
title variants are represented. Centrality measures can be 
applied to unipartite subgraphs of these networks to home 
in on areas where data duplication may exist.

Temporal-Topic Graphs for Analyzing the 
Evolution of Knowledge Over Time

A particularly active area of research in graph theory is 
the representation of dynamical systems as networks. A 
dynamical system is described as a complex system that 
changes over time.32 Computer scientists have devel-
oped various strategies and technologies to cope with 

Figure 10. Two Authors with Similar Names Linked by Subject Nodes
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basis for an on-the-fly search expansion tool. A query-
suggestion tool might look at user-entered terms and 
determine that some are hubs, then suggest related terms 
from nodes that connect to those hub nodes. Remember, 
graphs need not be visible to be useful!

Global Subject Resolution using Dbpedia

Although Dbpedia appears to lag behind Wikipedia in 
terms of completeness and scrutiny by domain experts, 
it offers one mechanism for unifying user-provided tags, 
author keywords, and library-assigned subject headings 
with a graph of known facts about a topic. Links into and 
out of Dbpedia’s graphs on a given topic would enable 
serendipitous knowledge discovery through browsing 
these semantic graphs.

VIAF Linked Author Data

OCLC’s effort to convert tens of millions of iden-
tity records into graphs describing various attributes 
of authors promises to enhance exploration of digital 
library content on the author dimension.42 These author-
ity records contain a wealth of information, linking name 
variations, basic genealogical data such as birth and death 
dates, associations with institutions, subject areas, and 
titles published by authors. Although some rough edges 
need to be smoothed (one of the authors of this paper 
discovered that his own authorship data was linked with 
another author of the same name), iterative refinement of 
this data as it is actually used may enable crowd-sourced 

the first-mover advantage and thus advance 
his or her career—is a valuable service that 
libraries are well positioned to provide (see 
figure 11).

Machine-supplied suggestions offer another 
type of prediction. For example, providing the 
prompt “Did you mean John Smith and climate 
change?” can leverage real or predicted relation-
ships between author and subject (see figure 12). 
Graphs, in turn, can be used to create tools that 
will simplify an author–subject search.

Viral Concept Detection

Phase transition typically refers to a process 
in thermodynamics that describes the point 
at which a material changes from one state of 
matter to another (e.g., liquid to solid). Phase 
transition also applies to the dispersal of a new 
idea. Interestingly enough, graphs represent-
ing matter at the point of phase transition, and 
graphs representing the spread of a fad in a 
social network, exhibit the same recognizable 
pattern of change: suddenly there are links 
between many more nodes, there’s a dramatic increase 
in clustering, and something called a giant component 
emerges.37 In a giant component, all of the nodes in that 
portion of the graph are interlinked, resulting in a com-
plete graph like figure 5. This is not so different from 
what one observes when something “goes viral” on the 
Internet. In a library, a dynamic graph showing the usage 
of new keywords for emerging subject areas would likely 
reflect a similar pattern.

■■ Linked Data Graph Examples

Cross-collection graphs, or graphs that link data under 
your control to data published online, can be con-
structed by building links into the Web of Linked Data.38 
Linked data refers to semantic graphs of statements that 
various organizations publish on the web. For example, 
Geonames.org publishes millions of statements about 
geographic locations on the Linked Data Web.39 As 
these graphs grow and evolve, opportunities emerge for 
using this data in combination with your own data in 
various ways. For example, it would be quite interesting 
to develop a network representation of library subject 
headings and their relationships to concepts in the ency-
clopedic linked data collection known as DBpedia.40 
The resulting graph could be used in a variety of ways: 
for example, to evaluate the consistency of statements 
made about concepts, to establish semantic links between 
user-provided tags and concepts,41 or to function as the 

Figure 11. Identifying Areas for Collaboration: A co-author graph with many 
simple motifs and few clusters might indicate a field ripe for collaboration
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content could be represented and explored as 
a graph, and some research has already shown 
that geographic networks—especially those 
representing human-constructed entities such 
as cities and transportation networks—exhibit 
small world characteristics.45

Another way graphs can express geographic 
relationships in useful ways would be in repre-
senting the concept of nearness. Waldo Tobler’s 
first law of geography states that “everything 
is related to everything else, but near things 
are more related than distant things.”46 In 
practice, human beings define nearness in dif-
ferent ways, so a graph representing a shared 
concept of nearness would be very valuable, 
particularly in exploring works associated with 
biological, ecological, geological, or evolution-
ary sciences. Graph representations of nearness 
could be developed by librarians working with 
scientists and could be the geographic equiva-
lent to subject guides and finding aids. They 
also might be useful across disciplines and 
would enable machine inferencing across data 
that include geographic relationships.

Still Other Kinds of Graphs

What might a digital library tool based on 
graph theory look like? What could it do? It 

wouldn’t necessarily depict visualizations of graphs 
(though in some cases visual graphs are the most efficient 
way to impart concepts). After all, citation databases uti-
lize graph theory, but the user only sees a number (cite 
count) and lists of articles (citing or cited). In many cases, 
then, the tool would perform graph evaluation techniques 
behind the scenes, translating these metrics into simple 
descriptive queries for the user. For example, a user inter-
ested in the most influential papers in his field would 
enter his subject, and then on the backend, the tool would 
apply Eigenvector centrality to that subject’s citation 
graph. If the same user finds an especially relevant article, 
clicking a “find similar articles” button will produce a list 
of papers in that graph with the shortest path length to 
the paper in question.

Researchers also could use this tool to evaluate authors 
and institutions in various ways:

■■ Is my output diverse or specialized compared to my col-
leagues? The tool assigns a score for each author based 
on degree centrality in a subject-author graph.

■■ I want to find potential collaborators. The tool returns 
authors connected to researcher by the shortest path 
length in a coauthorship graph.

■■ I want to collaborate with colleagues from other depart-
ments at my institution. High betweenness centrality 

quality control that will more rapidly identify and resolve 
these problems.

Linked Geographic Data Using Geonames

It is ironic that the use of networks to describe geographic 
aspects of the world is in its infancy, considering that many 
consider Leonhard Euler’s attempt to find a mathematical 
solution to the Seven Bridges of Königsberg problem in 
1735 to be the birth of the field.43 As some authors have 
pointed out, geometric evaluation of geographic rela-
tionships is actually a poor way to explore geographic 
relationships.44 Graphs can be used to express arbitrary 
relationships between geographically separated objects, 
and it is perhaps no accident that our road and railway 
systems are in fact among the most familiar graphs that 
people encounter in the real word. A subway map is a 
graph where subway stations are nodes linked by railway. 
Graphs can represent the relationships between topo-
logical features, the visibility of buildings in a city to one 
another, or the land, sea, and air transportation that links 
one country to another. Geonames supplies a rich collec-
tion of geographic information that includes descriptions 
of geopolitical entities (cities, states, countries), geophysi-
cal features, and various names that have been ascribed to 
these objects. The geographic relationships in intellectual 

Figure 12. Find Similar Articles: A search for HV Reynolds might prompt a 
suggestion for SD Miller, who has a similar authorship pattern
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Resolution Maps of Science,” ed. Alan Ruttenberg, PLoS ONE 4, 
no. 3 (3, 2009): e4803.
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Reports MIT-CSAIL-TR-2010–043, 2010, http://hdl.handle 
.net/1721.1/58484 (accessed Feb. 17, 2011).
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Review E 64, no. 1 (2001), DOI: 10.1103/PhysRevE.64.016132.
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20.	 R. Milo, “Network Motifs: Simple Building Blocks of 

Complex Networks,” Science 298, no. 5594 (2002): 824–27.
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in a subject–author graph for that institution may 
locate potential “bridge” subjects to collaborate in.

■■ I’m leaving my current job. What other institutions are 
doing similar work? In an institution–subject graph, the 
shorter the path length between two institutions, the 
more comparable they may be.

Graphs also enable libraries to reach outside their own 
data to build connections with other data sets. Heterogeneity, 
which makes relational database representations of arbitrary 
relationships difficult or impossible, becomes a trivial matter 
of adding additional nodes and edges to bridge collections. 
The Linked Data Web defines simple requirements for 
establishing just such representations, and libraries are well-
positioned to build these bridges.

■■ Conclusion

For many centuries, libraries have served as repositories 
for the accumulated knowledge and creative products 
of civilization, and they contain mankind’s best efforts 
at comprehending complexity. This knowledge includes 
scientific works that strive to understand various aspects 
of the physical world, many of which are complex and 
require the efforts of numerous researchers over time. Since 
the advent of the Dewey Decimal System, librarians have 
worked on many fronts to make this knowledge discover-
able and to assist in its evaluation. Qualitative evaluation 
increasingly requires understanding a resource in a larger 
context. We suggest that this context is itself a complex 
system, which would benefit from the modeling and quan-
titative evaluation techniques that network science has to 
offer. We believe librarians are well positioned to leverage 
network science to explore and comprehend emergent 
properties of complex information environments. As moti-
vation for this pursuit, we offer in closing this prescient 
quote from Carl Woese, which though focused on the 
discipline of biology, is equally applicable to the myriad 
complexities of modern life: “A society that permits biol-
ogy to become an engineering discipline, that allows that 
science to slip into the role of changing the living world 
without trying to understand it, is a danger to itself.”47
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