Information Retrieval Using a
Middleware Approach Danijela Boberi¢ Krsti¢ev

ABSTRACT

This paper explores the use of a mediator/wrapper approach to enable the search of an existing
library management system using different information retrieval protocols. It proposes an
architecture for a software component that will act as an intermediary between the library system
and search services. It provides an overview of different approaches to add Z39.50 and
Search/Retrieval via URL (SRU) functionality using a middleware approach that is implemented on
the BISIS library management system. That wrapper performs transformation of Contextual Query
Language (CQL) into Lucene query language. The primary aim of this software component is to
enable search and retrieval of bibliographic records using the SRU and Z39.50 protocols, but the
proposed architecture of the software components is also suitable for inclusion of the existing library
management system into a library portal. The software component provides a single interface to
server-side protocols for search and retrieval of records. Additional protocols could be used. This
paper provides practical demonstration of interest to developers of library management systems and
those who are trying to use open-source solutions to make their local catalog accessible to other
systems.

INTRODUCTION

Information technologies are changing and developing very quickly, forcing continual adjustment
of business processes to leverage the new trends. These changes affectall spheres of society,
including libraries. There is a need to add new functionality to existing systems in ways that are
cost effective and do notrequire major redevelopment of systems that have achieved a reasonable
level of maturity and robustness. This paper describes how to extend an existing library
management system with new functionality supporting easy sharing of bibliographic information
with other library management systems.

One of the core services of library management systems is support for shared cataloging. This
service consists of the following activities: a librarian when processing a new bibliographical unit
first checks whether the bibliographic unit has already been recorded in another library in the
world. If it is found, then the librarian stores that electronic records to his/her local database of
bibliographic records. In order to enable those activities, it is necessary that standard way of
communication between differentlibrary management systems exists. Currently, the well-known
standards in this area are Z39.501 and SRU.2

Danijela Boberi¢ Krsti¢ev (dboberic@uns.ac.rs) is a member Department of Mathematics and
Informatics, Faculty of Sciences, University of Novi Sad, Serbia.

INFORMATION TECHNOLOGY AND LIBRARIES | MARCH 2013 54

mailto:dboberic@uns.ac.rs

In this paper, a software component that integrates services for retrieval bibliographic records
using the Z39.50 and SRU standard is described. The main purpose of that componentis to
encapsulate server sides of the appropriate protocols and to provide a unique interface for
communication with the existing library management system. The same interface may be used
regardless of which protocols are used for communication with the library management system.
In addition, the software componentacts as an intermediary between two differentlibrary
management systems. The main advantage of the componentis that it is independent of library
management system with which it communicates. Also, the component could be extended with
new search and retrieval protocols. By using the component, the functionality of existing library
management systems would be improved and redevelopment of the existing system would notbe
necessary. It means that the existing library management system would just need to provide an
interface for communication with that component. That interface can even be implemented as an
XML web service.

Standards Used for Search and Retrieval

The Z39.50 standard was one of the first standards that defined a set of services to search for and
retrieve data. The standard is an abstract model that defines communication between the client
and server and does not go into details of implementation of the client or server. The model
defines abstract prefixes used for search that do notdepend on the implementation of the
underlying system. It also defines the formatin which data can be exchanged. The Z39.50 standard
defines query language type-1, which is required when implementing this standard.

The Z39.50 standard has certain drawbacks that new generation of standards, like SRU, is trying
to overcome. SRU tries to keep functionality defined by Z39.50 standard, but to allow its
implementation using current technologies. One of the main advantages of the SRU protocol, as
opposed to Z39.50, is that it allows messages to be exchanged in a form of XML documents, which
was not the case with the Z39.50 protocol. The query language used in SRU is called Contextual
Query Language (CQL).3

The SRU standard has two implementations, one in which search and retrieval is done by sending
messages via the HyperText Transfer Protocol (HTTP) GET and POST methods (SRU version) and
the other for sending messages using the Simple Object Access Protocol (SOAP) (SRW version).
The main difference between SRU and SRW is in the way of sending messages.* The SRW version
of the protocol packs messages in the SOAP Envelope element, while the SRU version of the
protocol sends messages based on parameter/value pairs thatare included in the URL. Another
difference between the two versions is that the SRU protocol for messages transfer uses only
HTTP, while SRW, in can use Secure Shell (SSH) and Simple Mail Transfer Protocol (SMTP), in
addition to HTTP.

INFORMATION RETRIEVAL USING A MIDDLEWARE APPROACH | KRSTICEV 55

RELATED WORK

A common approach for adding SRU support to library systems, most of which already support,
the Z39.50 search protocol,® has been to use existing software architecture that supports the
739.50 protocol. Simultaneously supporting both protocols is very important because individual
libraries will not decide to move to the new protocol until it is widely adopted within the library
community.

One approach in the implementation of a system for retrieval of data using both protocols is to
create two independent server-side components for Z39.50 and SRU, where both software
components access a single database. This approach involves creating a server implementation
from the scratch without the utilization of existing architectures, which could be considered a

disadvantage.
739.50 client side E SRU client side sj
Zservice SRUservice
Z39.50 server side {] SRU server side E
JDBC
database E

Figure 1. Software Architecture of a System with Separate Implementations of Server-
Side Protocols

This approach is good if there is an existing Z39.50 or SRU server-side implementation, or if there
is alibrary management system, for example, that supports just the Z39.50 protocol, but has open
programming code and allows changes that would allow the development of an SRU service.

The system architecture that is based on this approach is shown in Figure 1 as a Unified Modeling
Language (UML) component diagram. In this figure, the software components that constitute the
implementation of the client and the server side for each individual protocol are clearly separated,
while the database is shared. The main disadvantage of this approach is that adding support for
new search and retrieval protocols requires the transformation of the query language supported
by that new protocol into the query language of target system. For example, if the existing library
management system uses a relational database to store bibliographic records, for every a new
protocol added, its query language must be transformed into the Structured Query Language (SQL)
supported by the database.

INFORMATION TECHNOLOGY AND LIBRARIES | MARCH 2013 56

However, in most commercial library management systems that supportserver-side Z39.50, local
development and maintenance of additional services may not be possible due to the closed nature
of the systems. One of the solutions in this case would be to create a so-called “gateway” software
component that implements both an SRU server and a Z39.50 client, used to access the existing
739.50 server. That is, if a SRU client's application sends search request, the gateway will accept
that request, transform it into the Z39.50 request and forward the request to the Z39.50 server.
Similarly, when the gateway receives a response from the Z39.50 server, the gateway will
transform this response in SRU response and forward it to the client. In this way, the client will
have the impression that communicates directly with the SRU server, while the existing Z39.50
server will think that it sends response directly to the Z39.50 client. Figure 2 presents a
component diagram that represents the architecture of the system that is based on this approach.

SRU client side s]

|

SRUS%Nice

gateway =

SRU serverside H_|

SRUt0z3950Converter &_|

739.50 client side 5_‘]

Zse ﬁvi ce

Z39.50 server side E

JD'PC

database E

Figure 2. Software Architecture of a System with a Gateway

The software architecture shown in the Figure 2 is one of the most common approaches and is
used by the Library of Congress (LC),° which uses the commercial Voyager’ library information
system, which allows searching by the Z39.50 protocol. In order to supportsearch of the LC
database using SRU, IndexData8 developed the YazProxy software component,® which is an SRU-
739.50 gateway. The same ideal® was used in the implementation of the "The European Library”11

INFORMATION RETRIEVAL USING A MIDDLEWARE APPROACH | KRSTICEV 57

portal, which aims to provide integrated access to the major collections of all the European
national libraries.

Another interesting approach in designing software architecture for systems dealing with
retrieval of information can be observed in the systems involved in searching heterogeneous
information sources. The architecture of these systems is shown in Figure 3.

The basicidea in most of these systems is to provide the user with a single interface to search
different systems. This means that there is a separate component that will accept a user query and
transform it into a query that is supported by the specific system component that offers search
and data retrieval. This componentis also known as a mediator. A separate wrapper component
must be created for each system to be searched, to convert the user's query to a query that is
understood by the particular target system.12

client E

uniform query language

mediator E
converterl converter2 converterN
wrapperl s] wrapper2 E wrapperN E
concrete query languagel concrete query language2 concrete query languageN
system1 E system2 E systemN E]

Figure 3. Architecture with the Mediator/Wrapper Approach

Figure 3 shows a system architecture that enables communication with three different systems
(system1, system2 and systemN), each of which may use a different query language and therefore
need different wrapper components (wrapperl, wrapper2 and wrapperN). In this architecture,
each system can be a new mediator component that will interact with other systems. That is, the
wrapper component can communicate with the system or with another mediator.

The role of the mediator is to accept the request defined by the user and send it to all wrapper
components. The wrapper components know how to transform the query thatis sent by a
mediator into a query that is supported by the target system with which the wrapper
communicates. In addition, the wrapper has to transform data received from the target system in a
format prescribed by the mediator. Communication between client applications and the mediator

INFORMATION TECHNOLOGY AND LIBRARIES | MARCH 2013 58

may be through one of the protocols for search and retrieval of information, for example through
the SRU or Z39.50 protocols, or it may be a standard HTTP protocol.

Systems in which the architecture is based on the mediator/wrapper approach are described in
several papers. Coiera et al (2005)13 describe the architecture of a system that deals with the
federated search of journals in the field of medicine, using the internal query language Unified
Query Language (UQL). For each information source with which the system communicates, a
wrapper was developed to translate queries from UQL into the native query language of the
source. The wrapper also has the task of returning search results to the mediator. Those results
are returned as an XML document, with a defined internal format called a Unified Response
Language (UReL). As an alternative to using particular defined languages (UQL and UReL), a CQL
query language and the SRU protocol could be used.

Another example of the use of mediators is described by Cousins and Sanders (2006),14 who
address the interoperability issues in cross-database access and suggesthow to incorporate a
virtual union catalogue into the wider information environment through the application of
middleware, using the Z39.50 protocol to communicate with underlying sources.

Software Component for Services Integration

This paper describes a software component that would enable the integration of services for
search and retrieval of bibliographic records into an existing library system. The main idea is that
the component should be modular and flexible in order to allow the addition of new protocols for
search and easy integration into the existing system. Based on the papers analyzed in the previous
section, it was concluded that a mediator/wrapper approach would work best. The architecture
of system that would include the componentand that would allow search and retrieval of
bibliographic records from other library systems is shown in Figure 4.

239.50 client & | SRUclient & |
Z39.50 server SRU server
intermediary E
mediator E
wrapper E

RecordManager

library information system E

INFORMATION RETRIEVAL USING A MIDDLEWARE APPROACH | KRSTICEV 59

Figure 4. Architecture of System for Retrieval of Bibliographic Records

In Figure 4, the central place is occupied by the intermediary component, which consists of a
mediator componentand a wrapper component. This componentis an intermediary between the
search service and an existing library system. The library system provides an interface
(RecordManager) which is responsible for returning records that match the received query.
Figure 4 also shows the components that are client applications that use specific protocols for
communication (SRU and Z39.50), as well as the components that represent the server-side
implementation of appropriate protocols.

This paper will notdescribe the architecture of components thatimplement the server side of the
Z39.50 and SRU protocols, primarily because there are already a lot of open-source solutions15
that implement those components and can easily be connected with this intermediary component.
In order to test the intermediary component, we used the server side of the Z39.50 protocol
developed through the JAFER project!¢; for the SRU server side, we developed a special web
service in the Java programming language. In further discussion, it is assumed that the
intermediary componentreceives queries from server-side Z39.50 and SRU services, and that this
component does not contain any implementation of these protocols.

The mediator component, which is part of the intermediary component, must accept queries sent
by the server-side search and retrieval services. The mediator component uses its own internal
representation of queries, so it is therefore necessary to transform received queries into the
appropriate internal representation. After that, the mediator will establish communication with
the wrapper component, which is in charge of executing queries in existing library system. The
basicrole of the wrapper componentis to transform queries received from the mediator into
queries supported by library system. After executing the query, the wrapper sends search results
as an XML document to the mediator. Before sending those results to server side of protocol, the
mediator must transform those results into the format that was defined by the client.

Mediator software component

The mediator is a software component that provides a unique interface for different client
applications. In this study, as shown in Figure 4, a slightly differentsolution was selected. Instead
of the mediator communicating directly with the client application, which in the case of protocols
for data exchange is client side of that protocol, it actually communicates with the server
components that implement the appropriate protocols, and the client application exchanges
messages with the corresponding server-side protocol. The Z39.50 client exchanges messages
with the appropriate Z39.50 server, and it communicates with the mediator component. A similar
process is done when communication is done using the SRU protocol. What is important to
emphasize is that the Z39.50 and SRU servers communicate with the mediator through a unified
user interface, represented in Figure 5 by class MediatorService. In this way the same method is
used to submit the query and receive results, regardless of which protocol is used. That means

INFORMATION TECHNOLOGY AND LIBRARIES | MARCH 2013 60

that our system becomes more scalable and that it is possible to add some new search and
retrieval protocols without refactoring the mediator component.

Figure 5 shows the UML class diagram that describes the software mediator component. The
MediatorService class is responsible for communication with the server-side Z39.50 and SRU
protocols. This class accepts queries from the server side of protocols and returns bibliographic
records in the format defined by the server.

The mediator can accept queries defined by different query languages. Its task is to transform
these queries to an internal query language, which will be forwarded to the wrapper component.
In this implementation, accepted queries are transformed into an object representation of CQL, as
defined by the SRU standard. One of the reasons for choosing CQL is that concepts defined in the
739.50 standard query language can be easily mapped to the corresponding concepts defined by
CQL. CQL is semantically rich, so can be used to create various types of queries. Also, because it is
based on the concept of context set, it is extensible and allows usage of various types of context
sets for different purposes. So, CQL is notjust limited to the function of searching bibliographic
material. It could, for example, be used for searching geographical data. Accordingly, it was
assumed that CQL is a general query language and that probably any query language could be
transformed into it. In this implementation, the object model of CQL query defined in project CQL-
Javal? was used. In the case that there is a new query language, it would be necessary to perform
mapping of the new query language into CQL or to extend the object model of CQL with new
concepts.

This implementation of the mediator component could transform two different types of queries
into the CQL object model. Currently, it can transform type-1 queries (used by Z39.50) and CQL
queries into CQL objectrepresentation. To to add a new query language, it would just be necessary
to add a new class that would implement the interface QueryConverter shown in Figure 5, but the
architecture of component mediator remains the same.

One task of the mediator componentis to return records in the format that was defined by the
client that sent the request.

INFORMATION RETRIEVAL USING A MIDDLEWARE APPROACH | KRSTICEV 61

UnimarcSerializer

+ serialize (String r) : Sting

Marc21Serializer
RecordSerialize

- + serialize (String r) : Sting
+ serialize (String r) : Sting

0.1 DublinCoreSerializer

01 + serialize (String r) : Sting

MediatorService o QueryConverter
1011

+ getRecords (Object query, String format) : String[] + parseQuery (Object query) : CQLNode

0.1

1..*
o Wrapper

+ executeQuery (CQLNode cqlQuery) : String[]

RPNConverter

+ parseQuery (Object query) : CQLNode

CQLStringConverter

+ parseQuery (Object query) : CQLNode

Figure 5. UML Class Diagram of Mediator Component

As the mediator communicates with the Z39.50 and SRU server side, the task of the Z39.50 and
SRU server side will be to check whether the format that the client requires is supported by the
underlying system. If it is not supported, the requestis not sent to mediator. Otherwise, the
mediator ensures the transformation of retrieved records into the chosen format. The mediator
obtains bibliographic records from the wrapper in the form of an XML document that is valid
according to the appropriate XML schema.18 The XML schema allows the creation of an XML
document describing bibliographic records according to the UNIMARC!? or MARC2120 format. The
currentimplementation of the mediator component supports transformation of bibliographic
records into an XML document that can be an instance of the UNIMARCslim XML schema,?! the
MARC21slim XML schema,?Z or the Dublin Core XML schema.23 Adding support for a new format
would require creating a new class that would extend the class RecordSerializer (Figure 5).
Because this mediator component works with XML, the transformation of bibliographic records
into a new formatalso could be done by using Exstensible Stylesheet Language Transformations
(XSLT).

INFORMATION TECHNOLOGY AND LIBRARIES | MARCH 2013 62

Wrapper software component

The wrapper software component is responsible for ensuring communication between the
mediator and the existing library system. That is, the wrapper componentis responsible for
transforming the CQL objectrepresentation into a concrete query thatis supported by the existing
library system and for obtaining results that match the query. Implementation of the wrapper
component directly depends on the architecture of the existing library system. Figure 7 proposes a
possible architecture of the wrapper component. This proposed architecture assumes that the
existing library system provides some kind of service that will be used by the wrapper component
to send the query and obtain results. The RecordManager interface in Figure 7 is an example of
such a service. RecordManager has two operations, one which executes the query and returns the
number of hits and the second operation which returns bibliographic records. This proposed
solution is useful for libraries that use a library management system that can be extended. It may
notbe appropriate for libraries using an “off the self” library management system that cannotbe
extended.

The proposed architecture of the wrapper componentis based on a strategy design pattern,24
primarily because of the need for transformation of the CQL query into a query that is supported
by the library system. According to the CQL concept of context sets, all prefixes that can be
searched are grouped in context sets, and these sets are registered with the Library of

Congress. The concept of context sets enables specific communities and users to define their own
prefixes, relations, and modifiers without fear that their name will be identical to the name of
prefix defined in another set. That is, it is possible to define two prefixes with the same name, but
they belong to different sets and therefore have different semantics.

CQL offers the possibility of combining in a single query elements that are defined in different
context sets. When parsing a query, it is necessary to check which context seta particular item
belongs to and then to apply appropriate mapping of the element from the context set to the
corresponding element defined by the query language used in the library system.

The strategy design pattern includes patterns that describe the behavior of objects (behavioral
patterns), which determine the responsibility of each object and the way in which objects
communicate with each other. The main task of a strategy pattern is to enable easy adjustment of
the algorithm that is applied by an object at runtime. Strategy pattern defines a family of
algorithms, each of which is encapsulated in a single object. Figure 6 is shows a class diagram from
the book “Design Patterns: Elements of Reusable Object-Oriented Software,“?> which describes basic
elements of strategy patterns.

INFORMATION RETRIEVAL USING A MIDDLEWARE APPROACH | KRSTICEV 63

Context sialedy p| Strategy

Contextinterfacer) Algorithyinterface()

\

ConcreteStrategyA ConcreteStrategyB

Algorithylnterface() Algorithylnterface()

Figure 6. Strategy Design Pattern

The basic elements of this pattern are the classes Context, Strategy, ConcreteStrategyA and
ConcreteStrategyB. The class Context is in charge of choosing and changing algorithms in a way
that creates an instance of the appropriate class, which implements the interface Strategy.
Interface Strategy contains the method AlgorityInterface(), which should implement all classes
that implement that interface. Class ConcreteStrategyA implements one concrete algorithm.

This design pattern is used when transforming CQL queries primarily because CQL queries can
consist of elements that belong to different context sets, whose elements are interpreted
differently. Classes Context, Strateqy, CQLStrategy and DcStrategy, shown in Figure 7, are elements
of strategy pattern responsible for mapping concepts defined by CQL. The class Context is
responsible for selection of appropriate strategies for parsing, depending on which context set the
element that is going to be transformed belongs to. Class CQLStrategy and DcStrategy are
responsible for mapping the elements belonging respectively to the CQL or Dublin Core context
setin the appropriate elements of a particular query language used by the library system.

The use of strategy pattern makes it possible, in real time, to change the algorithm that will parse
the query depending on what context setis used. The described implementation of a wrapper
component enables the parsing of queries that contain only elements that belong to CQL and/or
the Dublin Core context set. In order to provide support for a new context set, a new
implementation of interface Strategy (Figure 7) would be required, including an algorithm to
parse the elements defined by this new set.

INFORMATION TECHNOLOGY AND LIBRARIES | MARCH 2013 64

Context

Wrapper
0.1 : -
21 [setStrategy (String strategy) : void
+ executeQuery (CQLNode cqlQuery) - String[] + maplndexToUnderIayl_ngPreflx (String index) Stn_ng
- makeQuery (CQLNode cql, Object underlayingQuery) : Object + parseOperand (String index, CQLTermNode node) : Object
| 0..1
| 0.1
“ 1.1
1.1
| Strategy
0= RecordManager
+ maplndexToUnderlayingPrefix (String index) : String
+ select (Object query) :int[] + parseOperand (String underlayingPref, CQLTermNode node) : Object
+ getRecords (int hits[]) : String[]
CQLStrategy
+ maplindexToUnderlayingPrefix (String index) : String
+ parseOperand (String underlayingPref, CQLTermNode node) : Object

DcStrategy
+ maplndexToUnderlayingPrefix (String index) : String
+ parseOperand (String underlayingPref, CQLTermNode node) : Object

Figure 7. UML Class Diagram of Wrapper Component

Integration of Intermediary Software Components into the BISIS Library System

The BISIS library system was developed atthe Faculty of Science and the Faculty of Technical
Sciences in Novi Sad, Serbia, and has had several versions since its introduction in 1993. The

fourth and currentversion of the system is based on XML technologies. Among the core functional
units of BISIS26 are:

e circulation of library material

e cataloging of bibliographicrecords

¢ indexing and retrieval of bibliographic records

e downloading bibliographic records through Z39.50 protocol
e creation of a card catalog

e creation of statistical reports

An intermediary software component has been integrated into the BISIS system. The intermediary
component was written in the Java programming language and implemented as a web application.
Communication between server applications that supportthe Z39.50 and SRU protocols and the
intermediary component is done using the software package Hessian.2” Hessian offers a simple
implementation of two protocols to communicate with Web services, a binary protocol and its
corresponding XML protocol, both of which rely on HTTP. Use of Hessian package makes it easy to
create a Java servlet on the server side and proxy object on client-side, which will be used to

INFORMATION RETRIEVAL USING A MIDDLEWARE APPROACH | KRSTICEV 65

communicate with the servlet. In this case, the proxy objectis deployed on the server side of
protocol and the intermediary component contains a servlet. Communication between the
intermediary and BISIS is also realized using the Hessian software package, which leads to the
possibility of creating a distributed system because the existing library system, the intermediary
component, and server applications that implement the protocols can be located on physically
separate computers.

The BISIS library system uses the Lucene software package for indexing and searching. Lucene has
defined its own query language,?° so the wrapper component thatis integrated into BISIS has to
transform to the CQL query object model the object representation of the query defined by Lucene.
Therefore the wrapper first needs to determine to which context set the index belongs and then
apply the appropriate strategy for mapping the index. The rules for mapping the index to Lucene
fields are read from the corresponding XML document that is defined for every context set.

Listing 1 below provides an example of an XML document that contains some rules for mapping
indexes of the Dublin Core context setto Lucene index fields. The XML element index represents
the name of index which is going to be mapped, while the XML element mappingElement contains
the name of Lucene field. For example, the title index defined in the DublinCore context set, which
denotes search by title of the publication, is mapped to the field TI, which is used by the search
engine of BISIS system.

<?xml version="1.0" encoding="UTF-8"7>
<contextSet identifier="info:srw/cql-context-set/1/dc-v1.1" name="dc">
<indexes>
<index>
<name>title</name>
<mappingElement>TI</mappingElement>
</index>
<index>
<name>creator</name>
<mappingElement>AU</mappingElement>
</index>
<index>
<name>subject</name>
<mappingElement>SB</mappingElement>
</index>
</indexes>
</contextSet>

Listing 1. XML Document with Rules for Mapping the DublinCore Context Set
After the index is mapped to corresponding fields in Lucene, a similar procedure is repeated for a

relationship that may belong to some other context set or may have modifiers that belong to some

INFORMATION TECHNOLOGY AND LIBRARIES | MARCH 2013 66

other contextset. It is therefore necessary to change the current strategy for mapping into a new
one. By doing this, all elements of the CQL query are converted into a Lucene query, so the new
query can be sent to BISIS to be executed.

Approximately 40 libraries in Serbia currently use the BISIS system, which includes a Z39.50
client, allowing the libraries to search the collections of other libraries that support
communication through the Z39.50 protocol. By integrating the intermediary componentin the
BISIS system, non-BISIS libraries may now search the collections of libraries that use BISIS. As a
first step, the intermediary component was just integrated in a few libraries, without any major
problems. The component is most useful to the city libraries that use system BISIS, because they
have many branches, which can now search and retrieve bibliographic records from their central
libraries. The component could potentially be used by other library management system,
assuming the presence of an appropriate wrapper component to transform CQL to the target
query language.

CONCLUSION

This paper describes an independent, modular software component that enables the integration of
a service for search and retrieval of bibliographic records into an existing library system. The
software component provides a single interface to server-side protocols to search and retrieve
records, and could be extended to supportadditional server-side protocols. The paper describes
the communication of this component with Z39.50 and SRU servers.

The software component was developed for integration with the BISIS library system, butis an
independent component that could be integrated in any other library system.

The proposed architecture of the software component s also suitable for inclusion of the existing
library system into a single portal. The architecture of the portal should involve one mediator
component whose task would be to communicate with wrapper components of individual library
systems. Each library system would implement its own search and store functionalities and could
function independently of the portal. The basic advantage of this architecture is that it is possible
to include new library systems that provide search services. It is only necessary to add a new
wrapper that will perform the appropriate transformation of the query obtained from the
mediator componentin a query that the library system can process. The task of the mediator is to
send queries to the wrapper, while each wrapper can establish communication with a specific
library system. After obtaining the results from underlying library system, the mediator should be
able to combine results, remove duplicate, and sortresults. In this way end user would have
impression that he has been searched a single database.

REFERENCES

. “Information Retrieval (Z39.50): Application Service Definition and Protocol Specification,”
http://www.loc.gov/z3950/agency/Z39-50-2003.pdf (accessed February 22,2013).

INFORMATION RETRIEVAL USING A MIDDLEWARE APPROACH | KRSTICEV 67

http://www.loc.gov/z3950/agency/Z39-50-2003.pdf

2. “Search/Retrieval via URL,” http://www.loc.gov/standards/sru/.

3. “Contextual Query Language - CQL,” http://www.loc.gov/standards/sru/specs/cql.html.

4. Eric Lease Morgan, "An Introduction to the Search/Retrieve URL Service (SRU),” Ariadne 40
(2004), http://www.ariadne.ac.uk/issue40/morgan.

5. LarryE.Dixson, "YAZ Proxy Installation to Enhance Z39.50 Server Performance,” Library Hi Tech
27,1n0.2 (2009): 277-285, http://dx.doi.org/10.1108/07378830910968227; Mike Taylor and
Adam Dickmeiss, “Delivering MARC/XML records from the library of congress catalogue using the
open protocols SRW/U and Z39.50,” (paper presented at World Library and Information Congress:
71st IFLA General Conference and Council, Oslo, 2005).

6. Mike Taylor and Adam Dickmeiss,“Delivering MARC/XML Records from the Library of Congress
Catalogue Using the Open Protocols SRW /U and Z39.50,” (paper presented at World Library and
Information Congress: 71st IFLA General Conference and Council, Oslo, 2005).

7. “Voyager Integrated Library System,” http://www.exlibrisgroup.com/category/Voyager.

8. “IndexData,” http://www.indexdata.com/.

9. “YazProxy,” http://www.indexdata.com/yazproxy.

10. Theo van Veen and Bill Oldroyd, “Search and Retrieval in The European Library,” D-Lib Magazine
10, no. 2 (2004), http://www.dlib.org/dlib/february04 /vanveen/02vanveen.html..

11. “The European Library,” http://www.theeuropeanlibrary.org./tel4/.

12. Gio Wiederhold ,“Mediators in the Architecture of Future Information Systems,” Computer 25, no.
3(1992): 38-49, http://dx.doi.org/10.1109/2/121508.

13. Enrico Coiera, Martin Walther, Ken Nguyen, and Nigel H. Lovell, “Architecture for Knowledge-
Based and Federated Search of Online Clinical Evidence,” Journal of Medical Internet Research 7, no.
5 (2005), http://www.jmir.org/2005/5/e52/.

14. Shirley Cousins and Ashley Sanders, “Incorporating a Virtual Union Catalogue into the Wider
Information Environment through the Application of Middleware: Interoperability Issues in Cross-
database Access,” Journal of Documentation 62,no0. 1 (2006): 120-144,
http://dx.doi.org/10.1108/00220410610642084.

15. “SRU Software and Tools,” http://www.loc.gov/standards/sru/resources/tools.html; “Z39.50
Registry of Implementators,” http://www.loc.gov/z3950/agency/register/entries.html.

16. “JAFER ToolKit Project,” http://www.jafer.org.

17. “CQL-Java: a free CQL compiler for Java,” http://zing/z3950.org/cql/java/.

INFORMATION TECHNOLOGY AND LIBRARIES | MARCH 2013 68

http://www.loc.gov/standards/sru/
http://www.loc.gov/standards/sru/specs/cql.html
http://www.ariadne.ac.uk/issue40/morgan
http://dx.doi.org/10.1108/07378830910968227
http://www.exlibrisgroup.com/category/Voyager
http://www.indexdata.com/
http://www.indexdata.com/yazproxy
http://www.dlib.org/dlib/february04/vanveen/02vanveen.html
http://www.theeuropeanlibrary.org./tel4/
http://dx.doi.org/10.1109/2/121508
http://www.jmir.org/2005/5/e52/
http://dx.doi.org/10.1108/00220410610642084
http://www.loc.gov/standards/sru/resources/tools.html
http://www.loc.gov/z3950/agency/register/entries.html
http://www.jafer.org/
http://zing/z3950.org/cql/java/

18. Bojana Dimi¢, Branko Milosavljevi¢ and DusSan Surla,“XML Schema for UNIMARC and MARC 21
formats,” The Electronic Library 28, no. 2 (2010): 245-262,
http://dx.doi.org/10.1108/02640471011033611.

19. “UNIMARC formats and related documentation,” http://www.ifla.org/en/publications/unimarc-
formats-and-related-documentation.

20. “MARC 21 Format for Bibliographic Data,” http://www.loc.gov/marc/bibliographic/.

21. “UNIMARCSlim XML Schema,”

http://www.bncf/firenze.sbn.it/progetti/unimarc/slim/documentation /unimarcslim.xsd.

22. “Marc21Slim XML Schema,” http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd.
23. “DublinCore XML Schema,” http://www.loc.gov/standards/sru/resources/dc-schema.xsd.

24. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software (Indianapolis: Addison-Wesley, 1994),315-323.

25. Ibid.

26. Danijela Boberi¢ and Branko Milosavljevi¢, “Generating Library Material Reports in Software
System BISIS,” (Proceedings of the 4th international conference on engineering technologies - ICET,
NoviSad, 2009); Danijela Boberi¢ and DuSan Surla, “XML Editor for Search and Retrieval of
Bibliographic Records in the Z39.50 Standard”, The Electronic Library 27, no.3 (2009): 474-495,
http://dx.doi.org/10.1108/02640470910966916 (accessed February 22,1013); Bojana Dimi¢
and Dusan Surla, “XML Editor for UNIMARC and MARC21 cataloguing,” The Electronic Library 27,
no.3 (2009): 509-528, http://dx.doi.org/10.1108/02640470910966934 (accessed February 22,
2013); Jelena Radenovi¢, Branko Milosavljevi¢ and Dusan Surla, “Modelling and Implementation of

Catalogue Cards using FreeMarker,” Program: electronic library and information systems 43, no. 1
(2009): 63-76, http://dx.doi.org/10.1108/00330330934110 (accessed February 22,2013);
Danijela TeSendi¢, Branko Milosavljevi¢ and DuSan Surla, “A Library Circulation System for City
and Special Libraries”, The Electronic Library 27,no0. 1 (2009): 162-186,
http://dx.doi.org/10.1108/02640470910934669.

27. “Hessian,” http://hessian.caucho.com/doc/hessian-overview.xtp.

28. Branko Milosavljevi¢, Danijela Boberi¢, and Dusan Surla, “Retrieval of Bibliographic Records Using
Apache Lucene,” The Electronic Library 28,no0.4 (2010): 525-539,
http://dx.doi.org/10.1108/02640471011065355.

ACKNOWLEDGEMENT

The work s partially supported by the Ministry of Education and Science of the Republic of Serbia,
through projectno. 174023: "Intelligent techniques and their integration into wide-spectrum
decision support."

INFORMATION RETRIEVAL USING A MIDDLEWARE APPROACH | KRSTICEV 69

http://dx.doi.org/10.1108/02640471011033611
http://www.ifla.org/en/publications/unimarc-formats-and-related-documentation
http://www.ifla.org/en/publications/unimarc-formats-and-related-documentation
http://www.loc.gov/marc/bibliographic/
http://www.bncf.firenze.sbn.it/progetti/unimarc/slim/documentation/unimarcslim.xsd
http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd
http://www.loc.gov/standards/sru/resources/dc-schema.xsd
http://dx.doi.org/10.1108/02640470910966916
http://dx.doi.org/10.1108/02640470910966934
http://dx.doi.org/10.1108/00330330934110
http://dx.doi.org/10.1108/02640470910934669
http://hessian.caucho.com/doc/hessian-overview.xtp
http://dx.doi.org/10.1108/02640471011065355

	ABSTRACT

