
Generating Collaborative Systems for Digital Libraries   |   Malizia, Bottoni, and Levialdi     171

from previous experience and from research in software
engineering. Wasted effort and poor interoperability can
therefore ensue, raising the costs of DLs and jeopardizing
the fluidity of information assets in the future.

In addition, there is a need for modeling services and
data structures as highlighted in the “Digital Library
Reference Model” proposed by the DELOS EU network
of excellence (also called the “DELOS Manifesto”);2 in
fact, the distribution of DL services over digital networks,
typically accessed through Web browsers or dedicated
clients, makes the whole theme of interaction between
users important, for both individual usage and remote
collaboration. Designing and modeling such interactions
call for considerations pertaining to the fields of human–
computer interaction (HCI) and computer-supported
cooperative work (CSCW). As an example, scenario-
based or activity-based approaches developed in the HCI
area can be exploited in DL design.

To meet these needs we developed CRADLE
(Cooperative-Relational Approach to Digital Library
Environments),3 a metamodel-based Digital Library
Management System (DLMS) supporting collaboration
in the design, development, and use of DLs, exploiting
patterns emerging from previous projects. The entities of
the CRADLE metamodel allow the specification of col-
lections, structures, services, and communities of users
(called “societies” in CRADLE) and partially reflect the
DELOS Manifesto. The metamodel entities are based on
existing DL taxonomies, such as those proposed by Fox
and Marchionini,4 Gonçalves et al.,5 or in the DELOS
Manifesto, so as to leverage available tools and knowl-
edge. Designers of DLs can exploit the domain-specific
visual language (DVSL) available in the CRADLE envi-
ronment—where familiar entities extracted from the
referred taxonomies are represented graphically—to
model data structures, interfaces and services offered
to the final users. The visual model is then processed
and transformed, exploiting suitable templates, toward
a set of specific languages for describing interfaces and
services. The results are finally transformed into platform-
independent (Java) code for specific DL applications.

CRADLE supports the basic functionalities of a DL
through interfaces and service templates for managing,
browsing, searching, and updating. These can be further
specialized to deploy advanced functionalities as defined
by designers through the entities of the proposed visual

The design and development of a digital library involves
different stakeholders, such as: information architects,
librarians, and domain experts, who need to agree on
a common language to describe, discuss, and negoti-
ate the services the library has to offer. To this end,
high-level, language-neutral models have to be devised.
Metamodeling techniques favor the definition of domain-
specific visual languages through which stakeholders can
share their views and directly manipulate representations
of the domain entities. This paper describes CRADLE
(Cooperative-Relational Approach to Digital Library
Environments), a metamodel-based framework and visual
language for the definition of notions and services related
to the development of digital libraries. A collection of
tools allows the automatic generation of several services,
defined with the CRADLE visual language, and of the
graphical user interfaces providing access to them for the
final user. The effectiveness of the approach is illustrated
by presenting digital libraries generated with CRADLE,
while the CRADLE environment has been evaluated by
using the cognitive dimensions framework.

D igital libraries (DLs) are rapidly becoming a pre-
ferred source for information and documentation.
Both at research and industry levels, DLs are the

most referenced sources, as testified by the popularity
of Google Books, Google Video, IEEE Explore, and the
ACM Portal. Nevertheless, no general model is uni-
formly accepted for such systems. Only few examples of
modeling languages for developing DLs are available,1
and there is a general lack of systems for designing and
developing DLs. This is even more unfortunate because
different stakeholders are interested in the design and
development of a DL, such as information architects, to
librarians, to software engineers, to experts of the spe-
cific domain served by the DL. These categories may
have contrasting objectives and views when deploying
a DL: librarians are able to deal with faceted categories
of documents, taxonomies, and document classification;
software engineers usually concentrate on services and
code development; information architects favor effective-
ness of retrieval; and domain experts are interested in
directly referring to the content of interest without going
through technical jargon. Designers of DLs are most often
library technical staff with little to no formal training in
software engineering, or computer scientists with little
background in the research findings of hypertext infor-
mation retrieval. Thus DL systems are usually built from
scratch using specialized architectures that do not benefit

Alessio Malizia (alessio.malizia@uc3m.es) is Associate Profes-
sor, Universidad Carlos III, Department of Informatics, Madrid,
Spain; Paolo Bottoni (bottoni@di.uniroma1.it) is Associate Pro-
fessor and S. Levialdi (levialdi@di.uniroma1.it) is Professor, “Sa-
pienza” University of Rome, Department of Computer Science,
Rome, Italy.

Alessio Malizia, Paolo Bottoni,
and S. Levialdi

Generating Collaborative
Systems for Digital Libraries:
a Model-Driven Approach

172   I NFORMATION TECHNOLOGY AND LIBRARIES   |   December 2010

a formal foundation for digital libraries, called 5S, based
on the concepts of streams, (data) structures, (resource)
spaces, scenarios, and societies. While being evidence of a
good modeling endeavor, the approach does not specify
formally how to derive a system implementation from
the model.

The new generation of DL systems will be highly dis-
tributed, providing adaptive and interoperable behaviour
by adjusting their structure dynamically, in order to act in
dynamic environments (e.g., interfacing with the physical
world).13 To manage such large and complex systems, a
systematic engineering approach is required, typically
one that includes modeling as an essential design activity
where the availability of such domain-specific concepts as
first-class elements in DL models will make application
specification easier.14

While most of the disciplines related to DLs—e.g.,
databases,15 information retrieval,16 and hypertext and
multimedia17—have underlying formal models that have
properly steered them, little is available to formalize DLs
per se. Wang described the structure of a DL system as a
domain-specific database together with a user interface
for querying the records stored in the database.18 Castelli
et al. present an approach involving multidimensional
query languages for searching information in DL systems
that is based on first-order logic.19 These works model
metadata specifications and thus are the main examples
of system formalization in DL environments. Cognitive
models for information retrieval, as used for example by
Oddy et al.,20 focus on users’ information-seeking behav-
ior (i.e., formation, nature, and properties of a users’
information need) and on how information retrieval sys-
tems are used in operational environments.

Other approaches based on models and languages for
describing the entities involved in a DL are the Digital
Library Definition Language,21 the DSpace data model22
(with the definitions of communities and workflow mod-
els), the Metis Workflow framework,23 and the Fedora
structoid approach.24 E/R approaches are frequently
used for modeling database management system (DBMS)
applications,25 but as E/R diagrams only model the static
structure of a DBMS, they generally do not deal deeply
with dynamic aspects. Temporal extensions add dynamic
aspects to the E/R approach, but most of them are not
object-oriented.26 The advent of object-oriented technol-
ogy calls for approaches and tools to information system
design resulting in object-oriented systems. These consid-
erations drove research toward modeling approaches as
supported by UML.27

However, since the UML metamodel is not yet wide-
spread in the DL community, we adopted the E/R
formalism and complemented it with the specification of
the dynamics made available through the user interface,
as described by Malizia et al.28 Using the metamodel,
we have defined a DSVL, including basic entities and

language. CRADLE is based on the entity-relationship
(E/R) formalism, which is powerful and general enough
to describe DL models and is supported by many tools as
a metamodeling language. Moreover, we observed that
users and designers involved in the DL environment,
but not coming from a software engineering background,
may not be familiar with advanced formalism like unified
modeling language (UML), but they usually have basic
notions on database management systems, where E/R is
largely employed.

■■ Literature Review

DLs are complex information systems involving technolo-
gies and features from different areas, such as library and
information systems, information retrieval, and HCI. This
interdisciplinary nature is well reflected in the various
definitions of DLs present in the literature. As far back as
1965, Licklider envisaged collections of digital versions
of scanned documents accessible via interconnected com-
puters.6 More recently, Levy and Marshall described DLs
as sets of collections of documents, together with digital
resources, accessible by users in a distributed context.7 To
manage the amount of information stored in such systems,
they proposed some sort of user-assisting software agent.
Other definitions include not only printed documents,
but multimedia resources in general.8 However differ-
ent the definitions may be, they all include the presence
of collections of resources, their organization in struc-
tured repositories, and their availability to remote users
through networks (as discussed by Morgan).9 Recent
efforts toward standardization have been taken by public
and private organizations. For example, a Delphi study
identified four main ingredients: an organized collection
of resources, mechanisms for browsing and searching, a
distributed networked environment, and a set of objec-
tified services.10 The President’s Information Technology
Advisory Committee (PITAC) Panel on Digital Libraries
sees DLs as the networked collections of digital text, doc-
uments, images, sounds, scientific data, and software that
make up the core of today’s Internet and of tomorrow’s
universally accessible digital repositories of all human
knowledge.11

When considering DLs in the context of distributed
DL environments, only few papers have been produced,
contrasting with the huge bibliography on DLs in gen-
eral. The DL Group at the Universidad de las Américas
Puebla in Mexico introduced the concept of personal and
group spaces, relevant to the CSCW domain, in the DL
system context.12 Users can share information stored in
their personal spaces or share agents, thus allowing other
users to perform the same search on the document collec-
tions in the DL. The cited text by Gonçalves et al. gives

Generating Collaborative Systems for Digital Libraries   |   Malizia, Bottoni, and Levialdi     173

education as discussed by Wattenberg or Zia.33 In the
NSDL program, a new generation of services has been
developed that includes support for teaching and learn-
ing; this means also considering users’ activities or
scenarios and not only information access. Services for
implementing personal content delivery and sharing, or
managing digital resources and modeling collaboration,
are examples of tools introduced during this program.

The virtual reference desk (VRD) is emerging as an
interactive service based on DLs. With VRD, users can
take advantage of domain experts’ knowledge and librar-
ians’ experience to locate information. For example, the
U.S. Library of Congress Ask a Librarian service acts as
a VRD for users who want help in searching information
categories or to interact with expert librarians to search
for a specific topic.34

The interactive and collaborative aspects of activities
taking place within DLs facilitate the development of
user communities. Social networking, work practices, and
content sharing are all features that influence the technol-
ogy and its use. Following Borgmann,35 Lynch sees the
future of DLs not in broad services but in supporting and
facilitating “customization by community,” i.e., services
tailored for domain-specific work practices.36

We also examined the research agenda on system-
oriented issues in DLs and the DELOS manifesto.37 The
agenda abstracts the DL life cycle, identifying five main
areas, and proposes key research problems. In particular
we tackle activities such as formal modeling of DLs and
their communities and developing frameworks coherent
with such models.

At the architectural level, one point of interest is to
support heterogeneous and distributed systems, in par-
ticular networked DLs and services.38 For interoperability,
one of the issues is how to support and interoperate with
different metadata models and standards to allow distrib-
uted cataloguing and indexing, as in the Open Archive
Initiative (OAI).39

Finally, we are interested in the service level of the
research agenda and more precisely in Web services
and workflow management as crucial features when
including communities and designing DLs for use over
networks and for sharing content.

As a result of this analysis, the CRADLE framework
features the following:

■■ a visual language to help users and designers when
visual modeling their specific DL (without knowing
any technical detail apart from learning how to use a
visual environment providing diagrams representa-
tions of domain specific elements)

■■ an environment integrating visual modeling and code
generation instead of simply providing an integrated
architecture that does not hide technical details

■■ interface generation for dealing with different users

relationships for modeling DL-related scenarios and
activities. The need for the integration of multiple lan-
guages has also been indicated as a key aspect of the
DSVL approach.29 In fact, complex domains like DLs typi-
cally consist of multiple subdomains, each of which may
require its own particular language.

In the current implementation, the definition of DSVLs
exploits the metamodeling facilities of AToM3, based on
graph-grammars.30 AToM3 has been typically used for
simulation and model transformation, but we adopt it
here as a tool for system generation.

■■ Requirements for Modeling
Digital Libraries

We follow the DELOS Manifesto by considering a DL
as an organization (possibly virtual and distributed) for
managing collections of digital documents (digital con-
tents in general) and preserving their images on storage.
A DL offers contextual services to communities of users, a
certain quality of service, and the ability to apply specific
policies. In CRADLE we leave the definition of quality of
service to the service-oriented architecture standards we
employ and partially model the applicable policy, but we
focus here on crucial interactivity aspects needed to make
DLs usable by different communities of users.

In particular, we model interactive activities and
services based on librarians’ experiences in face-to-face
communication with users, or designing exchange and
integration procedures for communicating between insti-
tutions and managing shared resources.

While librarians are usually interested in modeling
metadata across DLs, software engineers aim at provid-
ing multiple tools for implementing services,31 such as
indexing, querying, semantics,32 etc. Therefore we pro-
vide a visual model useful for librarians and information
architects to mimic the design phases they usually per-
form. Moreover, by supporting component services, we
help software engineers to specify and add services on
demand to DL environments. To this end, we use a service
component model. By sharing a common language, users
from different categories can communicate to design a DL
system while concentrating on their own tasks (services
development and design for software engineers and DL
design for librarians and information architects). Users are
modeled according to the Delos Manifesto as DL End-users
(subdivided into content creators, content consumers, and
librarians), DL Designers (librarians and information archi-
tects), DL System Administrators (typically librarians), and
DL Application Developers (software engineers).

Several activities have been started on modeling
domain specific DLs. As an example, the U.S. National
Science Digital Library (NSDL) program promotes edu-
cational DLs and services for basic and advanced science

174   I NFORMATION TECHNOLOGY AND LIBRARIES   |   December 2010

■■ how that information is structured and organized
(Structural Model)

■■ the behavior of the DL (Service Model) and the differ-
ent societies of actors

■■ groups of services acting together to carry out the DL
behavior (Societal Model)

Figure 1 depicts the design approach supported by
CRADLE architecture, namely, modeling the society of
actors and services interacting in the domain-specific
scenarios and describing the documents and metadata
structure included with the library by defining a visual
model for all these entities. The DL is built using a col-
lection of stock parts and configurable components that
provide the infrastructure for the new DL. This infrastruc-
ture includes the classes of objects and relationships that
make up the DL, and processing tools to create and load
the actual library collection from raw documents, as well
as services for searching, browsing, and collection main-
tenance. Finally, the code generation module generates
tailored DL services code stubs by composing and special-
izing components from the component pool.

Initially, a DL designer is responsible for formalizing
(starting from an analysis of the DL requirements and
characteristics) a conceptual description of the DL using
metamodel concepts. Model specifications are then fed
into a DL generator (written in Python for AToM3), to
produce a DL tailored suitable for specific platforms and
requirements. After these design phases, CRADLE gener-
ates the code for the user interface and the parts of code
corresponding to services and actors interacting in the
described society. A set of templates for code generation

and designers
■■ flexible metadata definitions
■■ a set of interactive integrated tools for
user activities with the generated DL
system

To sum up, CRADLE is a DLMS aimed
at supporting all the users involved in
the development of a DL system and
providing interfaces, data modeling, and
services for user-driven generation of spe-
cific DLs. Although CRADLE does not
yet satisfy all requirements for a generic
DL system, it addresses issues focused
on developing interactive DL systems,
stressing interfaces and communication
between users. Nevertheless, we employed
standards when possible to leave it open
for further specification or enhancements
from the DL user community. Extensive
use of XML-based languages allows us to
change document information depending
on implemented recognition algorithms so
that expert users can easily model their DL by selecting the
best recognition and indexing algorithms.

CRADLE evolves from the JDAN (Java-based environ-
ment for Document Applications on Networks) platform,
which managed both document images and forms on the
basis of a component architecture.40 JDAN was based on
XML technologies, and its modularity allowed its integra-
tion in service-based and grid-based scenarios. It supported
template code generation and modeling, but it required the
designer to write XML specifications and edit XML schema
files in order to model the DL document types and services,
thus requiring technical knowledge that should be avoided
to let users concentrate on their specific domains.

■■ Modeling Digital Library Systems

The CRADLE framework shows a unique combination
of features: it is based on a formal model, exploits a set of
domain-specific languages, and provides automatic code
generation. Moreover, fundamental roles are played by the
concepts of society and collaboration.41 CRADLE generates
code from tools built after modeling a DL (according to the
rules defined by the proposed metamodel) and performs
automatic transformation and mapping from model to
code to generate software tools for a given DL model.

The specification of a DL in CRADLE encompasses
four complementary dimensions:

■■ multimedia information supported by the DL
(Collection Model)

Figure 1. CRADLE architecture

Generating Collaborative Systems for Digital Libraries   |   Malizia, Bottoni, and Levialdi     175

socioeconomic, and environment dimen-
sions. We now show in detail the entities
and relations in the derived metamodel,
shown in figure 2.

Actor Entities

Actors are the users of DLs. Actors interact
with the DL through services (interfaces)
that are (or can be) affected by the
actors preferences and messages (raised
events). In the CRADLE metamodel,
an actor is an entity with a behavior
that may concurrently generate events.
Communications with other actors may
occur synchronously or asynchronously.
Actors can relate through services to
shape a digital community, i.e., the basis
of a DL society. In fact, communities of
students, readers, or librarians interact
with and through DLs, generally follow-
ing predefined scenarios. As an example,
societies can behave as query generator
services (from the point of view of the

library) and as teaching, learning, and working services
(from the point of view of other humans and organiza-
tions). Communication between actors within the same
or different societies occur through message exchange. To
operate, societies need shared data structures and message
protocols, enacted by sending structured sequences of
queries and retrieving collections of results.

The actor entity includes three attributes:

1.	 Role identifies which role is played by the actor
within the DL society. Examples of specific human
roles include authors, publishers, editors, maintain-
ers, developers, and the library staff. Examples of
nonhuman actors include computers, printers, tele-
communication devices, software agents, and digital
resources in general.

2.	 Status is an enumeration of possible statuses for the
actor:

I.	 None (default value)
II.	 Active (present in the model and actively generat-

ing events)
III.	 Inactive (present in the model but not generating

events)
IV.	 Sleeping (present in the model and awaiting for a

response to a raised event)
3.	 Events describes a list of events that can be raised by

the actor or received as a response message from a
service. Examples of events are borrow, reserve, return,
etc. Events triggered from digital resources include
store, trash, and transfer. Examples of response events
are found, not found, updated, etc.

have been built for typical services of a DL environment.
To improve acceptability and interoperability,

CRADLE adopts standard specification sublanguages for
representing DL concepts. Most of the CRADLE model
primitives are defined as XML elements, possibly enclos-
ing other sublanguages to help define DL concepts. In
more detail, MIME types constitute the basis for encod-
ing elements of a collection. The XML User Interface
Language (XUL)42 is used to represent appearance and
visual interfaces, and XDoclet is used in the LibGen code
generation module, as shown in figure 1.43

■■ The Cradle Metamodel

In the CRADLE formalism, the specification of a DL
includes a Collection Model describing the maintained
multimedia documents, a Structural Model of informa-
tion organization, a Service Model for the DL behavior,
and a Societal Model describing the societies of actors
and groups of services acting together to carry out the DL
behavior.

A society is an instance of the CRADLE model defined
according to a specific collaboration framework in the DL
domain. A society is the highest-level component of a DL
and exists to serve the information needs of its actors and to
describe its context of usage. Hence a DL collects, preserves,
and shares information artefacts for society members.

The basic entities in CRADLE are derived from
the categorization along the actors, activities, components,

Figure 2. The CRADLE metamodel with the E/R formalism

176   I NFORMATION TECHNOLOGY AND LIBRARIES   |   December 2010

a text document, including scientific articles and books,
becomes a sequence of strings.

The Struct Entity

A Struct is a structural element specifying a part of a
whole. In DLs, structures represent hypertexts, taxono-
mies, relationships between elements, or containment.
For example, books can be structured logically into chap-
ters, sections, subsections, and paragraphs, or physically
into cover, pages, line groups (paragraphs), and lines.
Structures are represented as graphs, and the struct entity
(a vertex) contains four attributes:

1.	 Document is a pointer to the document entity the
structure refers to.

2.	 Id is a unique identifier for a structure element.
3.	 Type takes three possible values:

I.	 Metadata denotes a content descriptor, for instance
title, author, etc.

II.	 Layout denotes the associated layout, e.g., left
frame, columns, etc.

III.	 Item indicates a generic structure element used for
extending the model.

4.	 Values is a list of values describing the element con-
tent, e.g., title, author, etc.

Actors interact with services in an event-driven way.
Services are connected via messages (send and reply) and
can be sequential, concurrent, or task-related (when a ser-
vice acts as a subtask of a macroservice). Services perform
operations (e.g., get, add, and del) on collections, producing
collections of documents as results. Struct elements are
connected to each other as nodes of a graph representing
metadata structures associated with documents.

The metamodel has been translated to a DSVL, asso-
ciating symbols and icons with entities and relations (see
“CRADLE Language and Tools” below). With respect to
the six core concepts of the DELOS Manifesto (content,
user, functionality, quality, policy, and architecture), con-
tent can be modeled in CRADLE as collections and structs,
user as actor, and functionality as service. The quality con-
cept is not directly modeled in CRADLE, but for quality of
service we support standard service architecture. Policies
can be partially modeled by services managing interaction
between actors and collections, making it possible to apply
standard access policies. From the architectural point of
view, we follow the reference architecture of figure 1.

■■ CRADLE Language and Tools

In this section we describe the selection of languages and
tools of the CRADLE platform. To improve interoperability

Service Entities

Services describe scenarios, activities, operations, and
tasks that ultimately specify the functionalities of a DL,
such as collecting, creating, disseminating, evaluating,
organizing, personalizing, preserving, requesting, and
selecting documents and providing services to humans
concerned with fact-finding, learning, gathering, and
exploring the content of a DL. All these activities can be
described and implemented using scenarios and appear
in the DL setting as a result of actors using services (thus
societies). Furthermore, these activities realize and shape
relationships within and between societies, services, and
structures. In the CRADLE metamodel, the service entity
models what the system is required to do, in terms of
actions and processes, to achieve a task. A detailed task
analysis helps understand the current system and the
information flow within it in order to design and allocate
tasks appropriately. The service entity has four attributes:

1.	 Name is a string representing a textual description of
the service.

2.	 Sync states whether communication is synchronous
or asynchronous, modeled by values wait and nowait,
respectively.

3.	 Events is a list of messages that can trigger actions
among services (tasks); for example, valid or notValid
in case of a parsing service.

4.	 Responses contain a list of response messages that can
reply to raised events; they are used as a communica-
tion mechanism by actors and services.

The Collection Entity

Collections are sets of documents of arbitrary type (e.g., bits,
characters, images, etc.) used to model static or dynamic
content. In the static interpretation, a collection defines
information content interpreted as a set of basic elements,
often of the same type, such as plain text. Examples of
dynamic content include video delivered to a viewer, ani-
mated presentations, and so on. The attributes of collection
are name and documents. Name is a string, while documents
is a list of pairs (DocumentName, DocumentLabel), the latter
being a pointer to the document entity.

The Document Entity

Documents are the basic elements in a DL and are modeled
with attributes label and structure.

Label defines a textual string used by a collection entity
to refer to the document. We can consider it as a document
identifier, specifying a class or a type of document.

Structure defines the semantics and area of appli-
cation of the document. For example, any textual
representation can be seen as a string of characters, so that

Generating Collaborative Systems for Digital Libraries   |   Malizia, Bottoni, and Levialdi     177

graphs. Model manipulation can then be expressed
via graph grammars also specified in AToM3.

The general process of automatic creation of coop-
erative DL environments for an application is shown
in figure 3. Initially, a designer formalizes a conceptual
description of the DL using the CRADLE metamodel
concepts. This phase is usually preceded by an analysis
of requirements and interaction scenarios, as seen previ-
ously. Model specifications are then provided to a DL
code generator (written in Python within AToM3) to pro-
duce DLs tailored to specific platforms and requirements.
These are built on a collection of templates of services and
configurable components providing infrastructure for the
new DL.

The sketched infrastructure includes classes for
objects (tasks), relationships making up the DL, and
processing tools to upload the actual library collection
from raw documents, as well as services for searching
and browsing and for document collections maintenance.
The CRADLE generator automatically generates different
kinds of output for the CRADLE model of the cooperative
DL environment, such as service and collection managers.

Collection managers define the logical schemata of
the DL, which in CRADLE correspond to a set of MIME
types, XUL and XDoclet specifications, representing
digital objects, their component parts, and linking infor-
mation. Collection managers also store instances of their

and collaboration, CRADLE makes
extensive use of existing standard spec-
ification languages. Most CRADLE
outputs are defined with XML-based
formats, able to enclose other specific
languages. The basic languages and
corresponding tools used in CRADLE
are the following:

■■ MIME type. Multipurpose Internet
Mail Extensions (MIME) constitute
the basis for encoding documents
in CRADLE, supporting several
file formats and types of charac-
ter encoding. MIME was chosen
because of wide availability of
MIME types, and standardisation
of the approach. This makes it a
natural choice for DLs where dif-
ferent types of documents need
to be managed (PDF, HTML, Doc,
etc.). Moreover, MIME standards
for character encoding descrip-
tions help keeping the CRADLE
framework open and compliant
with standards.

■■ XUL. The XML User Interface
Language (XUL) is an XML-based markup language
used to represent appearance and visual interfaces.
XUL is not a public standard yet, but it uses many
existing standards and technologies, including DTD
and RDF,44 which makes it easily readable for peo-
ple with a background in Web programming and
design. The main benefit of XUL is that it provides a
simple definition of common user interface elements
(widgets). This drastically reduces the software devel-
opment effort required for visual interfaces.

■■ XDoclet. XDoclet is used for generating services
from tagged-code fragments. It is an open-source
code generation library which enables attribute-ori-
ented programming for Java via insertion of special
tags.45 It includes a library of predefined tags, which
simplify coding for various technologies, e.g., Web
services. The motivation for using XDoclet in the
CRADLE framework is related to its approach for
template code generation. Designers can describe
templates for each service (browse, query, and index)
and the XDoclet generated code can be automatically
transformed into the Java code for managing the
specified service.

■■ AToM3. AToM3 is a metamodeling system to model
graphical formalisms. Starting from a metaspecifi-
cation (in E/R), AToM3 generates a tool to process
models described in the chosen formalism. Models
are internally represented using abstract syntax

Figure 3. Cooperative DL generation process with CRADLE framework

178   I NFORMATION TECHNOLOGY AND LIBRARIES   |   December 2010

and (3) the metadata operations box.
The right column manages visualization and mul-

timedia information obtained from documents. The
basic features provided with the UI templates are docu-
ment loading, visualization, metadata organization, and
management.

The layout template, in the collection box, manages the
visualization of the documents contained in a collection,
while the visualization template works according to the
data (MIME) type specified by the document. Actually,
by selecting a document included in the collection, the
corresponding data file is automatically uploaded and
visualized in the UI.

The metadata visualization in the code template reflects
the metadata structure (a tree) represented by a struct,
specifying the relationship between parent and child
nodes. Thus the XUL template includes an area (the meta-
data box) for managing tree structures as described in the
visual model of the DL. Although the tree-like visualiza-
tion has potential drawbacks if there are many metadata
items, there should be no real concern with medium loads.

The UI template also includes a box to perform opera-
tions on metadata, such as insert, delete, and edit. Users
can select a value in the metadata box and manipulate
the presented values. Figure 4 shows an example of a UI
generated from a basic template.

Service Templates

To achieve automated code generation, we use XDoclet to
specify parameters and service code generation according
to such parameters. CRADLE can automatically annotate
Java files with name–value pairs, and XDoclet provides
a syntax for parameter specification. Code generation is

classes and function as search engines for the system.
Services classes also are generated and are represented as
attribute-oriented classes involving parts and features of
entities.

■■ CRADLE platform

The CRADLE platform is based on a model-driven
approach for the design and automatic generation of code
for DLs. In particular, the DSVL for CRADLE has four
diagram types (collection, structure, service, and actor) to
describe the different aspects of a DL.

In this section we describe the user interface (UI)
and service templates used for generating the DL tools.
In particular, the UI layout is mainly generated from
the structured information provided by the document,
struct, and collection entities. The UI events are managed
by invoking the appropriate services according to the
imported XUL templates. At the service and communica-
tion levels, the XDoclet code is generated by the service
and actor entities, exploiting their relationships. We also
show how code generation works and the advanced
platform features, such as automatic service discovery. At
the end of the section a running example is shown, rep-
resenting all the phases involved in using the CRADLE
framework for generating the DL tools for a typical
library scenario.

User Interface Templates

The generation of the UI is driven by the visual model
designed by the CRADLE user. Specifically, the model
entities involved in this process are document, struct and
collection (see figure 2) for the basic components and lay-
out of the interfaces, while linked services are described
in the appropriate templates.

The code generation process takes place through
transformations implemented as actions in the AToM3
metamodel specification, where graph-grammar rules
may have a condition that must be satisfied for the rule
to be applied (preconditions), as well as actions to be
performed when the rule is executed (postconditions). A
transformation is described during the visual modeling
phase in terms of conditions and corresponding actions
(inserting XUL language statements for the interface in
the appropriate code template placeholders). The gener-
ated user interface is built on a set of XUL template files
that are automatically specialized on the basis of the
attributes and relationships designed in the visual mod-
eling phase.

The layout template for the user interface is divided
into two columns (see figure 4). The left column is made
of three boxes: (1) the collection box (2) the metadata box,

Figure 4. An example of an automatically generated user inter-
face. (A) document area; (B) collection box; (C) metadata box; (D)
metadata operations box.

Generating Collaborative Systems for Digital Libraries   |   Malizia, Bottoni, and Levialdi     179

"msg arguments.argname">
{ "<XDtField : fieldName/>" ,
"<XDtField : fieldTagValue tagName=

"msg arguments.argname"
paramName="name"/>"
"<XDtField : fieldTagValue tagName=

"msg arguments.argname"
paramName=" desc "/>"
} ,
</XDtField : ifHasFieldTag>
</XDtField : forAllFields> };

The first two lines declare a class with a name class
nameImpl that extends the class name. The XDoclet
template tag XDtClass:className denotes the name of
the class in the annotated Java file. All standard XDoclet
template tags have a namespace starting with “XDt.”

The rest of the template uses XDtField : forAllField
to iterate through the fields. For each field with a tag
named msg arguments.argname (checked using XDtField
: ifHasFieldTag), it creates a subarray of strings using the
values obtained from the field tag parameters. XDtField
: fieldName gives the name of the field, while XDtField
: fieldTagValue retrieves the value of a given field tag
parameter. Characters that are not part of some XDoclet
template tags are directly copied into the generated
code. The following code segment was generated by
XDoclet using the annotated fields and the above tem-
plate segment:

public class MSGArgumentsImpl extends
MSGArguments {

public static String[][] argumentNames = new
String[][]{ {

"eventMsg" ,
" event " ,
" eventstring "
} ,
{
" responseMsg " ,
" response " ,
" responsestring "
} ,
};
}
Similarly, we generate the getter and setter

methods for each field:
<XDtField : forAllFields > <XDtField : ifHasFieldTag
tagName="msg arguments.argname">
public <XDtField : fieldType/> get <XDtField :

fieldName />() {
return <XDtField : fieldName />;
}
public void set <XDtField : fieldName />

(String value) {

based on code templates. Hence service templates are
XDoclet templates for transforming XDoclet code frag-
ments obtained from the modeled service entities.

The basic XDoclet template manages messages
between services, according to the event and response
attributes described in “CRADLE Language and Tools”
above. In fact, CRADLE generates a Java application
(a service) that needs to receive messages (event) and
reply to them (response) as parameters for the service
application. In XDoclet, these can be attached to the cor-
responding field by means of annotation tags, as in the
following code segments:

public class MSGArguments {
.
/*
* @msg arguments.argname name="event "

desc="event_string "
*/ protected String eventMsg = null;
/*
* @msg arguments.argname name="response"
* desc="response_string "
*/ protected String responseMsg = null;
}

Each msg arguments.argname related to a field is called
a field tag. Each field tag can have multiple parameters,
listed after the field tag. In the tag name msg arguments
.argname, the prefix serves as the namespace of all tags for
this particular XDoclet application, thus avoiding naming
conflicts with other standard or customized XDoclet tags.
Not only fields can be annotated, but also other entities
such as class and functions can have tags too.

XDoclet enables powerful code generation requir-
ing little or no customization (depending on how much
is provided by the template). The type of code to be
generated using the parameters is defined by the corre-
sponding XDoclet template.

We have created template files composed of Java
codes and special XDoclet instructions in the form of
XML tags. These XDoclet instructions allow conditionals
(if) and loops (for), thus providing us with expressive
power close to a programming language. In the following
example, we first create an array containing labels and
other information for each argument:

public class <XDtClass : classOf>
<XDtClass : className/>Impl</XDtClass :

classOf> extends
<XDtClass : classOf><XDtClass : className/>

</XDtClass : classOf> {
public static String[][] argumentNames = new

String[][] {
<XDtField : forAllFields>
<XDtField : ifHasFieldTag tagName=

180   I NFORMATION TECHNOLOGY AND LIBRARIES   |   December 2010

because different design choices in the template can lead
to vastly different code. We have included an incremental
mechanism by which users can modify the visual model
of a DL and regenerate (XUL interface) code only for the
modifications. By employing this solution, librarians
and DL designers can work as they would on paper by
designing the visual scheme and collaboratively updat-
ing and changing it. They can generate the code, verify
the implementation, and, if something has to be changed,
go back to the visual model, apply modification, and
generate code in a new iteration of the process. Once the
visual model has been modified, the system incremen-
tally updates the code by examining only those model
parts affected by the edit and modifying the correspond-
ing parts of the generated code.

The same approach could be used for services but
with a different technique. In fact, predefined templates
exist for basic services, e.g., indexing, uploading, and que-
rying. To allow service providers to add new code to the
rest of the service component list, we have implemented
a registry listing the available service templates. When the
user runs the code generation process, a routine verifies
if the service templates included in the model are avail-
able in the registry and loads it into memory for the code
generation process.

We are planning to support a standard mechanism
based on the Universal Description, Discovery, and
Integration registry.47 Moreover, we have developed an
advanced interface template that embeds validation code
into the XUL templates for the interfaces to look up the
list of services made available by the interface at run-time.
If there are services embedded in the interface but not
available, the interface is modified to prevent access to
them. For instance, suppose that an interface is specified
with buttons to access to the document upload and edit
services. If, at run-time, the check does not find the edit
service available, the interface will present only the but-
ton for the upload service.

■■ Generating a Digital Library
Environment

As a first step in designing the digital library environ-
ment in the CRADLE framework, designers model the
society involved in the specific scenario. We define a
running example, called Library, to show the process,
starting from the basic entities of the model. We consider
modeling a simple DL environment. The involved actors
are students and librarians. The DL Collection consists of
Digital Paper Documents with publication, author, and
title metadata information (struct entities). In figure 5, the
CRADLE environment (a society) is shown together with
the defined entities. Circles represent actors in the model,
rectangles render services, multiple rectangles represent

setValue ("<XDtField : fieldName/>" , value) ;
}<
/XDtField : ifHasFieldTag>
</XDtField : forAllFields >
This translates into the following generated code:
public java.lang.String get eventMsg () {
return eventMsg ;
}
public void set eventMsg (String value) {
setValue ("eventMsg" , value) ;
}
public java.lang.String getresponseMsg () {
return getresponseMsg ;
}
public void setresponseMsg (String value) {
setValue (" responseMsg " , value) ;
}

The same template is used for managing the name and
sync attributes of service entities.

Code Generation, Service Discovery,
and Advanced Features

A service or interface template only describes the solu-
tion to a particular design problem—it is not code.
Consequently, users will find it difficult to make the leap
from the template description to a particular implemen-
tation even though the template might include sample
code. Others, like software engineers, might have no
trouble translating the template into code, but they still
may find it a chore, especially when they have to do it
repeatedly. The CRADLE visual design environment
(based on AToM3) helps alleviate these problems. From
just a few pieces of information (the visual model), typi-
cally application-specific names for actors and services
in a DL society along with choices for the design trade-
offs, the tool can create class declarations and definitions
implementing the template. The ultimate goal of the
modeling effort remains, however, the production of
reliable and efficiently executable code. Hence a code
generation transformation produces interface (XUL) and
service (Java code from XDoclet templates) code from the
DL model.

We have manually coded XUL templates specifying
the static setup of the GUI, the various widgets and their
layout. This must be complemented with code gener-
ated from a DL model of the systems dynamics coded
into services. While other approaches are possible,46 we
employed the solution implemented within the AToM3
environment according to its graph grammar modeling
approach to code generation.

CRADLE supports a flexible iterative process for
visual design and code generation. In fact, a design
change might require substantial reimplementation

Generating Collaborative Systems for Digital Libraries   |   Malizia, Bottoni, and Levialdi     181

selecting one, the UI activates the metadata operations
box—figure 6(D). The selected metadata node will then
be presented in the lower (metadata operations) box,
labeled “set MetaData Values,” replacing the default
“None” value as shown in figure 6. After the metadata
item is presented, the user can edit its value and save it by
clicking on the “set value” button. The associated action
saves the metadata information and causes its display in
the intermediate box (tree-like structure), changing the
visualization according to the new values.

The code generation process for the Do_Search and
Front Desk services is based on XDoclet templates. In
particular, a message listener template is used to generate
the Java code for the Front Desk service. In fact, the Front
Desk service is asynchronous and manages communica-
tions between actors. The actors classes are generated
also by using the services templates since they have
attributes, events, and messages, just like the services.
The Do_Search service code is based on the producer and
consumer templates, since it is synchronous by defini-
tion in the modeled scenario. A get method retrieving a
collection of documents is implemented from the getter
template.

The routine invoked by the transformation action for
struct entities performs a breadth-first exploration of the
metadata tree in the visual model and attaches the cor-
responding XUL code for displaying the struct node in
the correct position within the graph structure of the UI.

collections, while a single rectangle
connected to a collection represents
a document entity; the circles linked
to the document entity are the
struct (metadata) entities. Metadata
entities are linked to the node rela-
tionships (organized as a tree) and
linked to the document entity by a
metadata LinkType relationship.

The search service is synchro-
nous (sync attribute set to “wait”).
It queries the document collec-
tion (get operation) looking for the
requested document (using meta-
data information provided by the
borrow request), and waits for the
result of get (a collection of docu-
ments). Based on this result, the
service returns a Boolean message
“Is_Available,” which is then propa-
gated as a response to the librarian
and eventually to the student, as
shown in figure 5.

When the library designer has
built the model, the transformation
process can be run, executing the
code generation actions associated
with the entities and services represented in the model.
The code generation process is based on template code
snippets generated from the AToM3 environment graph
transformation engine, following the generative rules of
the metamodel. We also use pre– and postconditions on
application of transformation rules to have code genera-
tion depend on verification of some property.

The generated UI is presented in figure 6. On the right
side, the document area is presented according to the XUL
template. Documents are managed according to their
MIME type: the PDF file of the example is loaded with the
appropriate Adobe Acrobat Reader plug-in.

On the left column of the UI are three boxes, according
to the XUL template. The collection box—figure 6(B)—
presents the list of documents contained in the collection
specified by the documents attribute of the library collec-
tion entity, and allows users to interact with documents.
After selecting a document by clicking on the list, it is
presented in the document area—figure 6(A)—where it
can be managed (edit, print, save, etc.).

In the metadata box—figure 6(C)—the tree structure
of the metadata is depicted according to the categoriza-
tion modeled by the designer. The XUL template contains
all the basic layout and action features for managing a
tree structure. The generated box contains the parent
and child nodes according to the attributes specified in
the corresponding struct elements. The user can click on
the root for compacting or exploding the tree nodes; by

Figure 5. The Library model, alias the model of the Library society

182   I NFORMATION TECHNOLOGY AND LIBRARIES   |   December 2010

workflow system. The Release collection maintains the
image files in a permanent storage, while data is written
to the target database or content management software,
together with XML metadata snippets (e.g., to be stored
in XML native DBMS).

A typical configuration would have the Recognition
service running on a server cluster, with many Data-
Entry services running on different clients (Web browsers
directly support XUL interfaces). Whereas current docu-
ment capture environments are proprietary and closed,
the definition of an XML-based interchange format allows
the suitable assembly of different component-based tech-
nologies in order to define a complex framework.

The realization of the JDAN DL system within the
CRADLE framework can be considered as a preliminary
step in the direction of a standard multimedia document
managing platform with region segmentation and clas-
sification, thus aiming at automatic recognition of image
database and batch acquisition of multiple multimedia
documents types and formats.

Personal and Collaborative Spaces

A personal space is a virtual area (within the DL society)
that is modeled as being owned and maintained by a
user including resources (document collections, services,
etc.), or references to resources, which are relevant to a
task, or set of tasks, the user needs to carry out in the DL.
Personal spaces may thus contain digital documents in
multiple media, personal schedules, visualization tools,
and user agents (shaped as services) entitled with various
tasks. Resources within personal spaces can be allocated

■■ Designing and Generating Advanced
Collaborative DL Systems

In this section we show the use of CRADLE as an analyti-
cal tool helpful in comprehending specific DL phenomena,
to present the complex interplays that occur between
CRADLE components and DL concepts in a real DL appli-
cation, and to illustrate the possibility of using CRADLE
as a tool to design and generate advanced tools for DL
development.

Modeling Document Images Collections

With CRADLE, the designer can provide the visual model
of the DL Society involved in document management and
the remaining phases are automatically carried out by
CRADLE modules and templates. We have provided the
user with basic code templates for the recognition and
indexing services, the data-entry plug-in, and archive
release. The designer can thus simply translate the par-
ticular DL society into the corresponding visual model
within the CRADLE visual modeling editor.

As a proof of concept, figure 7 models the JDAN archi-
tecture, introduced in “Requirements for Modeling Digital
Libraries,” exploiting the CRADLE visual language. The
Recognition Service performs the automatic document rec-
ognition and stores the corresponding document images,
together with the extracted metadata in the Archive col-
lection. It interacts with the Scanner actor, representing a
machine or a human operator that scans paper documents.
Designers can choose their own segmentation method
or algorithm; what is required to be compliant with the
framework is to produce an XDoclet template. It stores
the document images into the Archive collection, with its
different regions layout information according to the XML
metadata schema provided by the designer. If there is at
least one region marked as “not interpreted,” the Data-
Entry service is invoked on the “not interpreted” regions.

The Data-Entry service allows Operators to evaluate
the automatic classification performed by the system
and edit the segmentation for indexing. Operators can
also edit the recognized regions with the classification
engine (included in the Recognition service) and adjust
their values and sizes. The output of this phase is an XML
description that will be imported in the Indexing service
for indexing (and eventually querying).

The Archive collection stores all of the basic informa-
tion kept in JDAN, such as text labels, while the Indexing
service, based on a multitier architecture, exploiting
JBoss 3.0, has access to them. This service is responsible
for turning the data fragments in the Archive collection
into useful forms to be presented to the final users, e.g., a
report or a query result.

The final stage in the recognition process could be
to release each document to a content management or

Figure 6. The UI generated by CRADLE transforming the Library
model in XUL and XDocLet code

Generating Collaborative Systems for Digital Libraries   |   Malizia, Bottoni, and Levialdi     183

and metadata, but also can share
information with the various com-
mittees collaborating for certain tasks.

■■ Evaluation

In this section we evaluate the pre-
sented approach from three different
perspectives: usability of the CRADLE
notation, its expressiveness, and
usability of the generated DLs.

Usability of CRADLE Notation

We have tested it by using the
well known Cognitive Dimensions
framework for notations and visual
language design.48 The dimensions
are usually employed to evaluate
the usability of a visual language
or notation, or as heuristics to drive
the design of innovative visual lan-
guages. The significant results are as
follows.

Abstraction Gradient
An abstraction is a grouping of elements to be treated as
one entity. In this sense, CRADLE is abstraction-tolerant.
It provides entities for high-level abstractions of com-
munication processes and services. These abstractions
are intuitive as they are visualized as the process they
represent (services with events and responses) and easy
to learn as their configuration implies few simple attri-
butes. Although CRADLE does not allow users to build
new abstractions, the E/R formalism is powerful enough
to provide basic abstraction levels.

Closeness of Mapping
CRADLE elements have been assigned icons to resemble
their real-world counterparts (e.g., a collection is repre-
sented as a set of paper sheets). The elements that do not
have a correspondence with a physical object in the real
world have icons borrowed from well-known notations
(e.g., structs represented as graph nodes).

Consistency
A notation is consistent if a user knowing some of its
structure can infer most of the rest. In CRADLE, when
two elements represent the same entity but can be used
either as input or as output, then their shape is equal
but incorporates an incoming or an outgoing message in
order to differentiate them. See, for example, the icons for
services or those for graph nodes representing either a

according to the user’s role. For example, a conference
chair would have access to conference-specific materi-
als, visualization tools and interfaces to upload papers
for review by a committee. Similarly, we denote a group
space as a virtual area in which library users (the entire
DL society) can meet to conduct collaborative activities
synchronously or asynchronously. Explicit group spaces
are created dynamically by a designer or facilitator who
becomes (or appoints) the owner of the space and defines
who the participants will be. In addition to direct user-to-
user communication, users should be able to access library
materials and make annotations on them for every other
group to see. Ideally, users should be able to act (and carry
DL materials with them) between personal and group
spaces or among group spaces to which they belong.

It may also be the case, however, that a given resource
is referenced in several personal or group spaces. Basic
functionality required for personal spaces includes capa-
bilities for viewing, launching, and monitoring library
services, agents, and applications. Like group spaces,
personal spaces should provide users with the means to
easily become aware of other users and resources that
are present in a given group space at any time, as well as
mechanisms to communicate with other users and make
annotations on library resources.

We employed this personal and group space paradigm
in modeling a collaborative environment in the Academic
Conferences domain, where a Conference Chair can have
a personal view of the document collections (resources)

Figure 7. The CRADLE model for the JDAN framwork

184   I NFORMATION TECHNOLOGY AND LIBRARIES   |   December 2010

of “Sapienza” University of Rome (undergraduate stu-
dents), shown in figure 5, and (2) an application employed
with a project of Records Management in a collabora-
tion between the Computer Science and the Computer
Engineering Department of “Sapienza” University, as
shown in figure 7.

Usability of the Generated Tools

Environments for single-view languages generated with
AToM3 have been extensively used, mostly in an aca-
demic setting, in different areas like software and Web
engineering, modeling, and simulation; urban planning;
etc. However, depending on the kind of the domain,
generating the results may take some time. For instance,
the state reachability analysis in the DL example takes
a few minutes; we are currently employing a version of
AToM3 that includes Petri-nets formalism where we can
test the services states reachability.49 In general, from
application experience, we note the general agreement
that automated syntactical consistency support greatly
simplifies the design of complex systems. Finally, some
users pointed out some technical limitations of the cur-
rent implementation, such as the fact that it is not possible
to open several views at a time.

Altogether, we believe this work contributes to make
more efficient and less tedious the definition and main-
tenance of environments for DLS. Our model-based
approach must be contrasted with the programming-
centric approach of most CASE tools, where the language
and the code generation tools are hard-coded so that
whenever a modification has to be done (whether on the
language or on the semantic domain) developers have to
dive into the code.

■■ Conclusions and Future Work

DLs are complex information systems that integrate
findings from disciplines such as hypertext, information
retrieval, multimedia, databases, and HCI. DL design is
often a multidisciplinary effort, including library staff
and computer scientists. Wasted effort and poor inter-
operability can therefore ensue. Examining the related
bibliography, we noted that there is a lack of tools or
automatic systems for designing and developing coopera-
tive DL systems. Moreover, there is a need for modeling
interactions between DLs and users, such as scenario or
activity-based approaches.

The CRADLE framework fulfills this gap by providing
a model-driven approach for generating visual interaction
tools for DLs, supporting design and automatic generation
of code for DLs. In particular, we use a metamodel made of
different diagram types (collection, structures, service, and

struct or an actor, with different colors.

Diffuseness/Terseness
A notation is diffuse when many elements are needed to
express one concept. CRADLE is terse and not diffuse
because each entity expresses a meaning on its own.

Error-Proneness
Data flow visualization reduces the chance of errors
at a first level of the specification. On the other hand,
some mistakes can be introduced when specifying visual
entities, since it is possible to express relations between
source and target models which cannot generate semanti-
cally correct code. However, these mistakes should be
considered “programming errors more than slips,” and
may be detected through progressive evaluation.

Hidden Dependencies
A hidden dependency is a relation between two elements
that is not visible. In CRADLE, relevant dependencies are
represented as data flows via directed links.

Progressive Evaluation
Each DL model can be tested as soon as it is defined,
without having to wait until the whole model is finished.
The visual interface for the DL can be generated with just
one click, and services can be subsequently added to test
their functionalities.

Viscosity
CRADLE has a low viscosity because making small
changes in a part of a specification does not imply lots
of readjustments in the rest of it. One can change prop-
erties, events or responses and these changes will have
only local effect. The only local changes that could imply
performing further changes by hand are deleting entities
or changing names; however, this would imply minimal
changes (just removing or updating references to them)
and would only affect a small set of subsequent elements
in the same data flow.

Visibility
A DL specification consists of a single set of diagrams fit-
ting in one window. Empirically, we have observed that
this model usually involves no more than fifteen entities.
Different, independent CRADLE models can be simulta-
neously shown in different windows.

Expressiveness of CRADLE

The paper has illustrated the expressiveness of CRADLE
by defining different entities end relationships for differ-
ent DL requisites. To this end, two different applications
have been considered: (1) a basic example elaborated
with the collaboration of the Information Science School

Generating Collaborative Systems for Digital Libraries   |   Malizia, Bottoni, and Levialdi     185

Retrieval (Reading, Mass.: Addison-Wesley, 1999).
17.	 D. Lucarella and A. Zanzi, “A Visual Retrieval Environ-

ment for Hypermedia Information Systems,” ACM Transactions
on Information Systems 14 (1996): 3–29.

18.	 B. Wang, “A Hybrid System Approach for Supporting
Digital Libraries,” International Journal on Digital Libraries 2 (1999):
91–110,.

19.	 D. Castelli, C. Meghini, and P. Pagano, “Foundations of
a Multidimensional Query Language for Digital Libraries,” in
Proc. ECDL ’02, LNCS 2458 (Berlin: Springer, 2002): 251–65.

20.	 R. N. Oddy et al., eds., Proc. Joint ACM/BCS Symposium
in Information Storage & Retrieval (Oxford: Butterworths, 1981).

21.	 K. Maly, M. Zubair et al., “Scalable Digital Libraries Based
on NCSTRL/DIENST,” in Proc. ECDL ’00 (London: Springer,
2000): 168–79.

22.	 R. Tansley, M. Bass and M. Smith, “DSpace as an Open
Archival Information System: Current Status and Future Direc-
tions,” Proc. ECDL ’03, LNCS 2769 (Berlin: Springer, 2003):
446–60.

23.	 K. M. Anderson et al., “Metis: Lightweight, Flexible, and
Web-Based Workflow Services for Digital Libraries,” Proc. 3rd
ACM/IEEE-CS JCDL ’03 (Los Alamitos, Calif.: IEEE Computer
Society, 2003): 98–109.

24.	 N. Dushay, “Localizing Experience of Digital Content via
Structural Metadata,” In Proc. 2nd ACM/IEEE-CS JCDL ’02 (New
York: ACM, 2002): 244–52.

25.	 M. Gogolla et al., “Integrating the ER Approach in an OO
Environment,” Proc. ER, ’93 (Berlin: Springer, 1993): 376–89.

26.	 Heidi Gregersen and Christian S. Jensen, “Temporal
Entity-Relationship Models—A Survey,” IEEE Transactions on
Knowledge & Data Engineering 11 (1999): 464–97.

27.	 B. Berkem, “Aligning IT with the Changes using the
Goal-Driven Development for UML and MDA,” Journal of Object
Technology 4 (2005): 49–65.

28.	 A. Malizia, E. Guerra, and J. de Lara, “Model-Driven
Development of Digital Libraries: Generating the User Interface,”
Proc. MDDAUI ’06, http://sunsite.informatik.rwth-aachen.de/
Publications/CEUR-WS/Vol-214/ (accessed Oct 18, 2010).

29.	 D. L. Atkins et al., “MAWL: A Domain-Specific Language
for Form-Based Services,” IEEE Transactions on Software Engineer-
ing 25 (1999): 334–46.

30.	 J. de Lara and H. Vangheluwe, “AToM3: A Tool for
Multi-Formalism and Meta-Modelling,” Proc. FASE ’02 (Berlin:
Springer, 2002): 174–88.

31.	 J. M. Morales-Del-Castillo et al., “A Semantic Model of
Selective Dissemination of Information for Digital Libraries,”
Journal of Information Technology & Libraries 28 (2009): 21–30.

32.	 N. Santos, F. C. A. Campos, and R. M. M. Braga, “Dig-
ital Libraries and Ontology,” in Handbook of Research on Digital
Libraries: Design, Development, and Impact, ed. Y.-L. Theng et al.
(Hershey, Pa.: Idea Group, 2008): 1:19.

33.	 F. Wattenberg, “A National Digital Library for Science,
Mathematics, Engineering, and Technology Education,” D-Lib
Magazine 3 no. 10 (1998), http://www.dlib.org/dlib/october98/
wattenberg/10wattenberg.html (accessed Oct 18, 2010); L. L.
Zia, “The NSF National Science, Technology, Engineering, and
Mathematics Education Digital Library (NSDL) Program: New
Projects and a Progress Report,” D-lib Magazine, 7, no. 11
(2002), http://www.dlib.org/dlib/november01/zia/11zia.html
(accessed Oct 18, 2010).

34.	 U.S. Library of Congress, Ask a Librarian, http://www.loc	

society), which describe the different aspects of a DL. We
have built a code generator able to produce XUL code from
the design models for the DL user interface. Moreover,
we use template code generation integrating predefined
components for the different services (XDoclet language)
according to the model specification.

Extensions of CRADLE with behavioral diagrams and
the addition of analysis and simulation capabilities are
under study. These will exploit the new AToM3 capabili-
ties for describing multiview DSVLs, to which this work
directly contributed.

References

1.	 A. M. Gonçalves, E. A Fox, “5SL: a language for declara-
tive specification and generation of digital libraries,” Proc. JCDL
’02 (New York: ACM, 2002): 263–72.

2.	 L. Candela et al., “Setting the Foundations of Digital
Libraries: The DELOS Manifesto,” D-Lib Magazine 13 (2007),
http://www.dlib.org/dlib/march07/castelli/03castelli.html
(accessed Oct 18, 2010).

3.	 A. Malizia et al., “A Cooperative-Relational Approach to
Digital Libraries,” Proc. ECDL 2007, LNCS 4675 (Berlin: Springer,
2007): 75–86.

4.	 E. A. Fox and G. Marchionini, “Toward a Worldwide Dig-
ital Library,” Communications of the ACM 41 (1998): 29–32.

5.	 M. A. Gonçalves et al., “Streams, Structures, Spaces,
Scenarios, Societies (5s): A Formal Model for Digital Libraries,”
ACM Transactions on Information Systems 22 (2004): 270–312.

6.	 J. C. R. Licklider, Libraries of the Future (Cambridge, Mass.:
MIT Pr., 1965).

7.	 D. M. Levy and C. C. Marshall, “Going Digital: A Look at
Assumptions Underlying Digital Libraries,” Communications of
the ACM 38 (1995): 77–84.

8.	 R. Reddy and I. Wladawsky-Berger, “Digital Librar-
ies: Universal Access to Human Knowledge—A Report to the
President,” 2001, www.itrd.gov/pubs/pitac/pitac-dl-9feb01.pdf
(accessed Mar. 16, 2010).

9.	 E. L. Morgan, “MyLibrary: A Digital Library Framework
and Toolkit,” Journal of Information Technology & Libraries 27
(2008): 12–24.

10.	 T. R. Kochtanek and K. K. Hein, “Delphi Study of Digital
Libraries,” Information Processing Management 35 (1999): 245–54.

11.	 S. E. Howe et al., “The President’s Information Technology
Advisory Committee’s February 2001 Digital Library Report and
Its Impact,” In Proc. JCDL ’01 (New York: ACM, 2001): 223–25.

12.	 N. Reyes-Farfan and J. A. Sanchez, “Personal Spaces in the
Context of OA,” Proc. JCDL ’03 (IEEE Computer Society, 2003):
182–83.

13.	 M. Wirsing, Report on the EU/NSF Strategic Workshop on
Engineering Software-Intensive Systems, 2004, http://www.ercim.
eu/EU-NSF/sis.pdf (accessed Oct 18, 2010)

14.	 S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling:
Enabling Full Code Generation (Hoboken, N.J.: Wiley, 2008).

15.	 H. R. Turtle and W. Bruce Croft, “Evaluation of an Infer-
ence Network-Based Retrieval Model,” ACM Transactions on
Information Systems 9 (1991): 187–222.

16.	 R. A. Baeza-Yates, B. A. Ribeiro-Neto, Modern Information

186   I NFORMATION TECHNOLOGY AND LIBRARIES   |   December 2010

.mozilla.org/En/XUL (accessed Mar. 16, 2010).
43.	 XDoclet, Welcome! What is XDoclet? http://xdoclet	

.sourceforge.net/xdoclet/index.html (accessed Mar. 16, 2010).
44.	 W3C, Extensible Markup Language (XML) 1.0 (Fifth

Edition), http://www.w3.org/TR/2008/REC-xml-20081126/
(accessed Mar. 16, 2010); W3C, Resource Description Framework
(RDF), http://www.w3.org/RDF/ (accessed Mar. 16, 2010).

45.	 H. Wada and J. Suzuki, “Modeling Turnpike Frontend
System: A Model-Driven Development Framework Leveraging
UML Metamodeling and Attribute-Oriented Programming,”
Proc. MoDELS ’05, LNCS 3713 (Berlin: Springer, 2005): 584–600.

46.	 I. Horrocks, Constructing the User Interface with Statecharts
(Boston: Addison-Wesley, 1999).

47.	 Universal Discover, Description, and Integration OASIS
Standard, Welcome to UDDI XML.org, http://uddi.xml.org/
(accessed Mar. 16, 2010).

48.	 T. R. G. Green and M. Petre, “Usability Analysis of Visual
Programming Environments: A ‘Cognitive Dimensions Frame-
work,’” Journal of Visual Languages & Computing 7 (1996): 131–74.

49.	 J. de Lara, E. Guerra, and A. Malizia, “Model Driven
Development of Digital Libraries—Validation, Analysis and For-
mal Code Generation,” Proc. 3rd WEBIST ’07 (Berlin: Springer,
2008).

.gov/rr/askalib/ (accessed on Mar. 16, 2010).
35.	 C. L. Borgmann, “What are Digital Libraries? Competing

Visions,” Information Processing & Management 25 (1999):227–43.
36.	 C. Lynch, “Coding with the Real World: Heresies and

Unexplored Questions about Audience, Economics, and Con-
trol of Digital Libraries,” In Digital Library Use: Social Practice in
Design and Evaluation, ed. A. P. Bishop, N. A. Van House, and B.
Buttenfield (Cambridge, Mass.: MIT Pr., 2003): 191–216.

37.	 Y. Ioannidis et al., “Digital Library Information-Technol-
ogy Infrastructure,” International Journal of Digital Libraries 5
(2005): 266–74.

38.	 E. A. Fox et al., “The Networked Digital Library of Theses
and Dissertations: Changes in the University Community,” Jour-
nal of Computing Higher Education 13 (2002): 3–24.

39.	 H. Van de Sompel and C. Lagoze, “Notes from the Inter-
operability Front: A Progress Report on the Open Archives Ini-
tiative,” Proc. 6th ECDL, 2002, LNCS 2458 (Berlin: Springer 2002):
144–57.

40.	 F. De Rosa et al., “JDAN: A Component Architecture for
Digital Libraries,” DELOS Workshop: Digital Library Architectures,
(Padua, Italy: Edizioni Libreria Peogetto, 2004): 151–62.

41.	 Defined as a set of actors (users) playing roles and inter-
acting with services.

42.	 Mozilla Developer Center, XUL, https://developer	

