
Batch Loading Collections into DSpace   |   Walsh    117

Maureen P. Walsh

Batch Loading Collections into DSpace:
Using Perl Scripts for Automation and
Quality Control

colleagues briefly described batch loading MARC meta-
data crosswalked to DSpace Dublin Core (DC) in a poster
session.2 Mishra and others developed a Perl script to
create the DSpace archive directory for batch import of
electronic theses and dissertations (ETDs) extracted with
a Java program from an in-house bibliographic database.3
Mundle used Perl scripts to batch process ETDs for
import into DSpace with MARC catalog records or Excel
spreadsheets as the source metadata.4 Brownlee used
Python scripts to batch process comma-separated values
(CSV) files exported from Filemaker database software
for ingest via the DSpace item importer.5

More in-depth descriptions of batch loading are pro-
vided by Thomas; Kim, Dong, and Durden; Proudfoot
et al.; Witt and Newton; Drysdale; Ribaric; Floyd; and
Averkamp and Lee. However, irrespective of reposi-
tory software, each describes a process to populate their
repositories dissimilar to the workflows developed for the
Knowledge Bank in approach or source data.

Thomas describes the Perl scripts used to convert
MARC catalog records into DC and to create the archive
directory for DSpace batch import.6

Kim, Dong, and Durden used Perl scripts to semiauto-
mate the preparation of files for batch loading a University
of Texas Harry Ransom Humanities Research Center
(HRC) collection into DSpace. The XML source metadata
they used was generated by the National Library of New
Zealand Metadata Extraction Tool.7 Two subsequent proj-
ects for the HRC revisited the workflow described by Kim,
Dong, and Durden.8

Proudfoot and her colleagues discuss importing meta-
data-only records from departmental RefBase, Thomson
Reuters EndNote, and Microsoft Access databases into
ePrints. They also describe an experimental Perl script
written to scrape lists of publications from personal web-
sites to populate ePrints.9

Two additional workflow examples used citation
databases as the data source for batch loading into
repositories. Witt and Newton provide a tutorial on trans-
forming EndNote metadata for Digital Commons with
XSLT (Extensible Stylesheet Language Transformations).10
Drysdale describes the Perl scripts used to convert
Thomson Reuters Reference Manager files into XML
for the batch loading of metadata-only records into the
University of Glascow’s ePrints repository.11 The Glascow
ePrints batch workflow is additionally described by
Robertson and Nixon and Greig.12

Several workflows were designed for batch loading
ETDs into repositories. Ribaric describes the automatic

This paper describes batch loading workflows developed
for the Knowledge Bank, The Ohio State University’s
institutional repository. In the five years since the incep-
tion of the repository approximately 80 percent of the
items added to the Knowledge Bank, a DSpace repository,
have been batch loaded. Most of the batch loads utilized
Perl scripts to automate the process of importing meta-
data and content files. Custom Perl scripts were used
to migrate data from spreadsheets or comma-separated
values files into the DSpace archive directory format, to
build collections and tables of contents, and to provide
data quality control. Two projects are described to illus-
trate the process and workflows.

T he mission of the Knowledge Bank, The Ohio State
University’s (OSU) institutional repository, is to col-
lect, preserve, and distribute the digital intellectual

output of OSU’s faculty, staff, and students.1 The staff
working with the Knowledge Bank have sought from its
inception to be as efficient as possible in adding content
to DSpace. Using batch loading workflows to populate
the repository has been integral to that efficiency. The
first batch load into the Knowledge Bank was August
29, 2005. Over the next four years, 698 collections con-
taining 32,188 items were batch loaded, representing 79
percent of the items and 58 percent of the collections in
the Knowledge Bank. These batch loaded collections vary
from journal issues to photo albums. The items include
articles, images, abstracts, and transcripts. The majority
of the batch loads, including the first, used custom Perl
scripts to migrate data from Microsoft Excel spreadsheets
into the DSpace batch import format for descriptive meta-
data and content files. Perl scripts have been used for data
cleanup and quality control as part of the batch load pro-
cess. Perl scripts, in combination with shell scripts, have
also been used to build collections and tables of contents
in the Knowledge Bank. The workflows using Perl scripts
to automate batch import into DSpace have evolved
through an iterative process of continual refinement and
improvement. Two Knowledge Bank projects are pre-
sented as case studies to illustrate a successful approach
that may be applicable to other institutional repositories.

■■ Literature Review

Batch ingesting is acknowledged in the literature as a
means of populating institutional repositories. There
are examples of specific batch loading processes mini-
mally discussed in the literature. Branschofsky and her

Maureen P. Walsh (walsh.260@osu.edu) is Metadata Librarian/
Assistant Professor, The Ohio State University Libraries, Colum-
bus, Ohio.

118   IN FORMATION TECHNOLOGY AND LIBRARIES   |  S eptember 2010

relational database PostgreSQL 8.1.11 on the Red Hat
Enterprise Linux 5 operating system. The structure of the
Knowledge Bank follows the hierarchical arrangement
of DSpace. Communities are at the highest level and
can be divided into subcommunities. Each community
or subcommunity contains one or more collections. All
items—the basic archival elements in DSpace—are con-
tained within collections. Items consist of metadata and
bundles of bitstreams (files). DSpace supports two user
interfaces: the original interface based on JavaServer
Pages (JSPUI) and the newer Manakin (XMLUI) interface
based on the Apache Cocoon framework. At this writing,
the Knowledge Bank continues to use the JSPUI interface.

The default metadata used by DSpace is a Qualified
DC schema derived from the DC library application
profile.18 The Knowledge Bank uses a locally defined
extended version of the default DSpace Qualified DC
schema, which includes several additional element quali-
fiers. The metadata management for the Knowledge Bank
is guided by a Knowledge Bank application profile and
a core element set for each collection within the reposi-
tory derived from the application profile.19 The metadata
librarians at OSUL create the collection core element sets
in consultation with the community representatives. The
core element sets serve as metadata guidelines for sub-
mitting items to the Knowledge Bank regardless of the
method of ingest.

The primary means of adding items to collections
in DSpace, and the two ways used for Knowledge
Bank ingest, are (1) direct (or intermediated) author
entry via the DSpace Web item submission user inter-
face and (2) in batch via the DSpace item importer.
Recent enhancements to DSpace, not yet fully explored
for use with the Knowledge Bank, include new ingest
options using Simple Web-service Offering Repository
Deposit (SWORD), Open Archives Initiative Object Reuse
and Exchange (OAI-ORE), and DSpace package import-
ers such as the Metadata Encoding and Transmission
Standard Submission Information Package (METS SIP)

preparation of ETDs from the Internet Archive (http://
www.archive.org/) for ingest into DSpace using PHP
utilities.13 Floyd describes the processor developed to
automate the ingest of ProQuest ETDs via the DSpace item
importer.14 Also using ProQuest ETDs as the source data,
Averkamp and Lee described using XSLT to transform
the ProQuest data to Bepress’ (The Berkeley Electronic
Press) schema for batch loading into a Digital Commons
repository.15

The Knowledge Bank workflows described in this
paper use Perl scripts to generate DC XML and create the
archive directory for batch loading metadata records and
content files into DSpace using Excel spreadsheets or CSV
files as the source metadata.

■■ Background

The Knowledge Bank, a joint initiative of the OSU Libraries
(OSUL) and the OSU Office of the Chief Information
Officer, was first registered in the Registry of Open
Access Repositories (ROAR) on September 28, 2004.16
As of December 2009 the repository held 40,686 items
in 1,192 collections. The Knowledge Bank uses DSpace,
the open-source Java-based repository software jointly
developed by the Massachusetts Institute of Technology
Libraries and Hewlett-Packard.17 As a DSpace reposi-
tory, the Knowledge Bank is organized by communities.
The fifty-two communities currently in the Knowledge
Bank include administrative units, colleges, departments,
journals, library special collections, research centers,
symposiums, and undergraduate honors theses. The com-
monality of the varied Knowledge Bank communities is
their affiliation with OSU and their production of knowl-
edge in a digital format that they wish to store, preserve,
and distribute.

The staff working with the Knowledge Bank includes
a team of people from three OSUL areas—Technical
Services, Information Technology,
and Preservation—and the contracted
hours of one systems developer
from the OSU Office of Information
Technology (OIT). The OSUL team
members are not individually assigned
full-time to the repository. The current
OSUL team includes a librarian reposi-
tory manager, two metadata librarians,
one systems librarian, one systems
developer, two technical services staff
members, one preservation staff mem-
ber, and one graduate assistant.

The Knowledge Bank is cur-
rently running DSpace 1.5.2 and the Figure 1. DSpace simple archive format

archive_directory/
	item_000/
		dublin_core.xml--qualified Dublin Core metadata
		contents	 --text file containing one line per filename
		file_l.pdf	 --files to be added as bitstreams to the item
		file_2.pdf	
	item_001/
		dublin_core.xml
		file_1.pdf
		...

Batch Loading Collections into DSpace   |   Walsh    119

■■ Case Studies

The Issues of the Ohio Journal of Science

OJS was jointly published by OSU and the Ohio Academy
of Science (OAS) until 1974, when OAS took over sole
control of the journal. The issues of OJS are archived
in the Knowledge Bank with a two year rolling wall
embargo. The issues for 1900 through 2003, a total of 639
issues containing 6,429 articles, were batch loaded into
the Knowledge Bank. Due to rights issues, the retrospec-
tive batch loading project had two phases. The project to
digitize OJS began with the 1900–1972 issues that OSU
had the rights to digitize and make publicly available.
OSU later acquired the rights for 1973–present, and
(accounting for the embargo period) 1973–2003 became
phase 2 of the project. The two phases of batch loads were
the most complicated automated batch loading processes
developed to date for the Knowledge Bank. To batch load
phase 1 in 2005 and phase 2 in 2006, the systems devel-
opers working with the Knowledge Bank wrote scripts
to build collections, generate DC XML from the source
metadata, create the archive directory, load the metadata
and content files, create tables of contents, and load the
tables of contents into DSpace.

The OJS community in the Knowledge Bank is orga-
nized by collections representing each issue of the journal.
The systems developers used scripts to automate the
building of the collections in DSpace because of the
number needed as part of the retrospective project. The
individual articles within the issues are items within the
collections. There is a table of contents for the articles in
each issue as part of the collection homepages.21 Again,
due to the number required for the retrospective project,
the systems developers used scripts to automate the cre-
ation and loading of the tables of contents. The tables of
contents are contained in the HTML introductory text sec-
tion of the collection pages. The tables of contents list title,
authors, and pages. They also include a link to the item
record and a direct link to the article PDF that includes
the file size.

For each phase of the OJS project, a vendor con-
tracted by OSUL supplied the article PDFs and an Excel
spreadsheet with the article-level metadata. The metadata

format. This paper describes ingest via the DSpace batch
item importer.

The DSpace item importer is a command-line tool for
batch ingesting items. The importer uses a simple archive
format diagramed in figure 1. The archive is a directory of
items that contain a subdirectory of item metadata, item
files, and a contents file listing the bitstream file names.
Each item’s descriptive metadata is contained in a DC
XML file. The format used by DSpace for the DC XML
files is illustrated in figure 2. Automating the process of
creating the Unix archive directory has been the main
function of the Perl scripts written for the Knowledge
Bank batch loading workflows. A systems developer
uses the test mode of the DSpace item importer tool to
validate the item directories before doing a batch load.
Any significant errors are corrected and the process
is repeated. After a successful test, the batch is loaded
into the staging instance of the Knowledge Bank and
quality checked by a metadata librarian to identify any
unexpected results and script or data problems that need
to be corrected. After a successful load into the staging
instance the batch is loaded into the production instance
of the Knowledge Bank.

Most of the Knowledge Bank batch loading work-
flows use Excel spreadsheets or CSV files as the source
for the descriptive item metadata. The creation of the
metadata contained in the spreadsheets or files has var-
ied by project. In some cases the metadata is created by
OSUL staff. In other cases the metadata is supplied by
Knowledge Bank communities in consultation with a
metadata librarian or by a vendor contracted by OSUL.
Whether the source metadata is created in-house or exter-
nally supplied, OSUL staff are involved in the quality
control of the metadata.

Several of the first communities to join the Knowledge
Bank had very large retrospective collection sets to
archive. The collection sets of two of those early adopt-
ers, the journal issues of the Ohio Journal of Science (OJS)
and the abstracts of the OSU International Symposium on
Molecular Spectroscopy currently account for 59 percent
of the items in the Knowledge Bank.20 The successful
batch loading workflows developed for these two com-
munities—which continue to be active content suppliers
to the repository—are presented as case studies.

Figure 2. DSpace Qualified Dublin Core XML

<dublin_core>
<dcvalue element="title" qualifier="none">Notes on the Bird Life of Cedar Point</dcvalue>
<dcvalue element="date" qualifier="issued">1901-04</dcvalue>
<dcvalue element="creator" qualifier="none">Griggs, Robert F.</dcvalue>
</dublin_core>

120   IN FORMATION TECHNOLOGY AND LIBRARIES   |  S eptember 2010

article-level metadata to Knowledge Bank DC, as illus-
trated in table 1. The systems developers used the
mapping as a guide to write Perl scripts to transform the
vendor metadata into the DSpace schema of DC.

The workflow for the two phases was nearly identical,
except each phase had its own batch loading scripts. Due
to a staff change between the two phases of the project,
a former OSUL systems developer was responsible for
batch loading phase 1 and the OIT systems developer was
responsible for phase 2. The phase 1 scripts were all writ-
ten in Perl. The four scripts written for phase 1 created
the archive directory, performed database operations to
build the collections, generated the HTML introduction
table of contents for each collection, and loaded the tables
of contents into DSpace via the database. For phase 2, the
OIT systems developer modified and added to the phase
1 batch processing scripts. This case study focuses on
phase 2 of the project.

Batch Processing for Phase 2 of OJS

The annotated scripts the OIT systems developer used
for phase 2 of the OJS project are included in appen-
dix A, available on the ITALica weblog (http://ital-ica
.blogspot.com/). A shell script (mkcol.sh) added collec-
tions based on a listing of the journal issues. The script
performed a login as a selected user ID to the DSpace Web
interface using the Web access tool Curl. A subsequent
simple looping Perl script (mkallcol.pl) used the stored
credentials to submit data via this channel to build the
collections in the Knowledge Bank.

The metadata.pl script created the archive directory
for each collection. The OIT systems developer added the
PDF file for each item to Unix. The vendor-supplied meta-
data was saved as Unicode text format and transferred to
Unix for further processing. The developer used vi com-
mands to manually modify metadata for characters illegal
in XML (e.g., “<” and “&”). (Although manual steps
were used for this project, the OIT systems developer
improved the Perl scripts for subsequent projects by add-
ing code for automated transformation of the input data
to help ensure XML validity.) The metadata.pl script then
processed each line of the metadata along with the cor-
responding data file. For each item, the script created the
DC XML file and the contents file and moved them and
the PDF file to the proper directory. Load sets for each col-
lection (issue) were placed in their own subdirectory, and
a load was done for each subdirectory. The items for each
collection were loaded by a small Perl script (loaditems.
pl) that used the list of issues and their collection IDs and
called a shell script (import.sh) for the actual load.

The tables of contents for the issues were added to the
Knowledge Bank after the items were loaded. A Perl script
(intro.pl) created the tables of contents using the meta-
data and the DSpace map file, a stored mapping of item

received from the vendor had not been customized for the
Knowledge Bank. The OJS issues were sent to a vendor for
digitization and metadata creation before the Knowledge
Bank was chosen as the hosting site of the digitized jour-
nal. The OSU Digital Initiatives Steering Committee 2002
proposal for the OJS digitization project had predated the
Knowledge Bank DSpace instance. OSUL staff performed
quality-control checks of the vendor-supplied metadata
and standardized the author names. The vendor supplied
the author names as they appeared in the articles—in
direct order, comma separated, and including any “and”
that appeared. In addition to other quality checks per-
formed, OSUL staff edited the author names in the
spreadsheet to conform to DSpace author-entry conven-
tion (surname first). Semicolons were added to separate
author names, and the extraneous ands were removed. A
former metadata librarian mapped the vendor-supplied

Table 1. Mapping of vendor metadata to Qualified Dublin Core

Vendor-Supplied
Metadata

Knowledge Bank
Dublin Core

File [n/a: PDF file name]

Cover Title dc.identifier.citation*

ISSN dc.identifier.issn

Vol. dc.identifier.citation*

Iss. dc.identifier.citation*

Cover Date dc.identifier.citation*

Year dc.date.issued

Month dc.date.issued

Fpage dc.identifier.citation*

Lpage dc.identifier.citation*

Article Title dc.title

Author Names dc.creator

Institution dc.description

Abstract dc.description.abstract

n/a dc.language.iso

n/a dc.rights

n/a dc.type

*format: [Cover Title]. v[Vol.], n[Iss.] ([Cover Date]), [Fpage]-[Lpage]

Batch Loading Collections into DSpace   |   Walsh    121

directories to item handles created during the load. The
tables of contents were added to the Knowledge Bank using
a shell script (installintro.sh) similar to what was used to
create the collections. Installintro.sh used Curl to simulate
a user adding the data to DSpace by performing a login as
a selected user ID to the DSpace Web interface. A simple
looping Perl script (ldallintro.pl) called installintro.sh
and used the stored credentials to submit the data for the
tables of contents.

The Abstracts of the OSU International
Symposium on Molecular Spectroscopy

The Knowledge Bank contains the abstracts of the papers
presented at the OSU International Symposium on
Molecular Spectroscopy (MSS), which has met annually
since 1946. Beginning with the 2005 Symposium, the
complete presentations from authors who have autho-
rized their inclusion are archived along with the abstracts.
The MSS community in the Knowledge Bank currently
contains 17,714 items grouped by decade into six col-
lections. The six collections were created “manually”
via the DSpace Web interface prior to the batch loading
of the items. The retrospective years of the Symposium
(1946–2004) were batch loaded in three phases in 2006.
Each Symposium year following the retrospective loads
was batch loaded individually.

Retrospective MSS Batch Loads

The majority of the abstracts for the retrospective loads
were digitized by OSUL. A vendor was contracted by
OSUL to digitize the remainder and to supply the meta-
data for the retrospective batch loads. The files digitized
by OSUL were sent to the vendor for metadata capture.
OSUL provided the vendor a metadata template derived
from the MSS core element set. The metadata taken from
the abstracts comprised author, affiliation, title, year,
session number, sponsorship (if applicable), and a full
transcription of the abstract. To facilitate searching, the
formulas and special characters appearing in the titles and
abstracts were encoded using LaTeX, a document prepara-
tion system used for scientific data. The vendor delivered
the metadata in Excel spreadsheets as per the spreadsheet
template provided by OSUL. Quality-checking the meta-
data was an essential step in the workflow for OSUL. The
metadata received for the project required revisions and
data cleanup. The vendor originally supplied incomplete
files and spreadsheets that contained data errors, includ-
ing incorrect numbering, data in the wrong fields, and
inconsistency with the LaTeX encoding.

The three Knowledge Bank batch load phases for the
retrospective MSS project corresponded to the staged
receipt of metadata and digitized files from the vendor.
The annotated scripts used for phase 2 of the project,

which included twenty years of the OSU International
Symposium between 1951 and 1999, are included in
appendix B, available on the ITALica weblog. The OIT
systems developer saved the metadata as a tab-separated
file and added it to Unix along with the abstract files. A
Perl script (mkxml2.pl) transformed the metadata into
DC XML and created the archive directories for load-
ing the metadata and abstract files into the Knowledge
Bank. The script divided the directories into separate
load sets for each of the six collections and accounted for
the inconsistent naming of the abstract files. The script
added the constant data for type and language that was
not included in the vendor-supplied metadata. Unlike the
OJS project, where multiple authors were on the same
line of the metadata file, the MSS phase 2 script had to
code for authors and their affiliations on separate lines.
Once the load sets were made, the OIT systems devel-
oper ran a shell script to load them. The script (import_
collections.sh) was used to run the load for each set so
that the DSpace item import command did not need to be
constructed each time.

Annual MSS Batch Loads

A new workflow was developed for batch loading the
annual MSS collection additions. The metadata and item
files for the annual collection additions are supplied
by the MSS community. The community provides the
Symposium metadata in a CSV file and the item files in
a Tar archive file. The Symposium uses a Web form for
LaTeX–formatted abstract submissions. The community
processes the electronic Symposium submissions with a
Perl script to create the CSV file. The metadata delivered
in the CSV file is based on the template created by the
author, which details the metadata requirements for the
project.

The OIT systems developer borrowed from and modi-
fied earlier Perl scripts to create a new script for batch
processing the metadata and files for the annual Symposium
collection additions. To assist with the development of the
new script, I provided the developer a mapping of the
community CSV headings to the Knowledge Bank DC
fields. I also provided a sample DC XML file to illustrate
the desired result of the Perl transformation of the com-
munity metadata into DC XML. For each new year of the
Symposium, I create a sample DC XML result for an item
to check the accuracy of the script. A DC XML example
from a 2009 MSS item is included in appendix C, available
on the ITALica weblog. Unlike the previous retrospective
MSS loads in which the script processed multiple years
of the Symposium, the new script processes one year at
a time. The annual Symposiums are batch loaded indi-
vidually into one existing MSS decade collection. The new
script for the annual loads was tested and refined by load-
ing the 2005 Symposium into the staging instance of the

122   IN FORMATION TECHNOLOGY AND LIBRARIES   |  S eptember 2010

■■ Summary and Conclusion

Each of the batch loads that used Perl scripts had its
own unique features. The format of content and associ-
ated metadata varied considerably, and custom scripts to
convert the content and metadata into the DSpace import
format were created on a case-by-case basis. The differ-
ences between batch loads included the delivery format
of the metadata, the fields of metadata supplied, how
metadata values were delimited, the character set used for
the metadata, the data used to uniquely identify the files to
be loaded, and how repeating metadata fields were identi-
fied. Because of the differences in supplied metadata, a
separate Perl script for generating the DC XML and archive
directory for batch loading was written for each project.
Each new Perl script borrowed from and modified earlier
scripts. Many of the early batch loads were firsts for the
Knowledge Bank and the staff working with the reposi-
tory, both in terms of content and in terms of metadata.
Dealing with community- and vendor-supplied metadata
and various encodings (including LaTeX), each of the early
loads encountered different data obstacles, and in each case
solutions were written in Perl. The batch loading code has
matured over time, and the progression of improvements is
evident in the example scripts included in the appendixes.

Batch loading can greatly reduce the time it takes to
add content and metadata to a repository, but successful

Knowledge Bank. Problems encountered
with character encoding and file types
were resolved by modifying the script.

The metadata and files for the
Symposium years 2005, 2006, and 2007
were made available to OSUL in 2007,
and each year was individually loaded
into the existing Knowledge Bank col-
lection for that decade. These first three
years of community-supplied CSV files
contained author metadata inconsistent
with Knowledge Bank author entries.
The names were in direct order, upper-
case, split by either a semicolon or “and,”
and included extraneous data, such as
an address. The OIT systems developer
wrote a Perl script to correct the author
metadata as part of the batch loading
workflow. An annotated section of that
script illustrating the author modifica-
tions is included in appendix D, available
on the ITALica weblog. The MSS com-
munity revised the Perl script they used
to generate the CSV files by including an
edited version of this author entry cor-
rection script and were able to provide
the expected author data for 2008 and
2009. The author entries received for
these years were in inverted order (surname first) and
mixed case, were semicolon separated, and included no
extraneous data. The receipt of consistent data from the
community for the last two years has facilitated the stan-
dardized workflow for the annual MSS loads.

The scripts used to batch load the 2009 Symposium
year are included in appendix E, which appears at the
end of this text.

The OIT systems developer unpacked the Tar file
of abstracts and presentations into a directory named
for the year of the Symposium on Unix. The Perl script
written for the annual MSS loads (mkxml<year>.
pl) was saved on Unix and renamed mkxml2009.pl.
The script was edited for 2009 (including the name of
the CSV file and the location of the directories for the
unpacked files and generated XML). The CSV headings
used by the community in the new file were checked and
verified against the extract list in the script. Once the Perl
script was up-to-date and the base directory was created,
the OIT systems developer ran the Perl script to gener-
ate the archive directory set for import. The import.sh
script was then edited for 2009 and run to import the
new Symposium year into the staging instance of the
Knowledge Bank as a quality check prior to loading into
the live repository. The brief item view of an example MSS
2009 item archived in the Knowledge Bank is shown in
figure 3.

Figure 3. MSS 2009 archived item example

Batch Loading Collections into DSpace   |   Walsh    123

Proceedings of the 2003 International Conference on
Dublin Core and Metadata Applications: Supporting Com-
munities of Discourse and Practice—Metadata Research &
Applications, Seattle, Washington, 2003, http://dcpapers
.dublincore.org/ojs/pubs/article/view/753/749 (accessed Dec.
21, 2009).

3.	 R. Mishra et al., “Development of ETD Repository at
IITK Library using DSpace,” in International Conference on
Semantic Web and Digital Libraries (ICSD-2007), ed. A. R. D.
Prasad and Devika P. Madalli (2007), 249–59. http://hdl.handle
.net/1849/321 (accessed Dec. 21, 2009).

4.	 Todd M. Mundle, “Digital Retrospective Conversion of
Theses and Dissertations: An In House Project” (paper presented
to the 8th International Symposium on Electronic Theses & Dis-
sertations, Sydney, Australia, Sept. 28–30, 2005), http://adt.caul
.edu.au/etd2005/papers/080Mundle.pdf (accessed Dec. 21,
2009).

5.	 Rowan Brownlee, “Research Data and Repository Meta-
data: Policy and Technical Issues at the University of Sydney
Library,” Cataloging & Classification Quarterly 47, no. 3/4 (2009):
370–79.

6.	 Steve Thomas, “Importing MARC Data into DSpace,”
2006, http://hdl.handle.net/2440/14784 (accessed Dec. 21,
2009).

7.	 Sarah Kim, Lorraine A. Dong, and Megan Durden, “Auto-
mated Batch Archival Processing: Preserving Arnold Wesker’s
Digital Manuscripts,” Archival Issues 30, no. 2 (2006): 91–106.

8.	 Elspeth Healey, Samantha Mueller, and Sarah Ticer, “The
Paul N. Banks Papers: Archiving the Electronic Records of
a Digitally-Adventurous Conservator,” 2009, https://pacer
.ischool.utexas.edu/bitstream/2081/20150/1/Paul_Banks_
Final_Report.pdf (accessed Dec. 21, 2009); Lisa Schmidt, “Pres-
ervation of a Born Digital Literary Genre: Archiving Legacy
Macintosh Hypertext Files in DSpace,” 2007, https://pacer
.ischool.utexas.edu/bitstream/2081/9007/1/MJ%20WBO%20
Capstone%20Report.pdf (accessed Dec. 21, 2009).

9.	 Rachel E. Proudfoot et al., “JISC Final Report: IncReASe
(Increasing Repository Content through Automation and Ser-
vices),” 2009, http://eprints.whiterose.ac.uk/9160/ (accessed
Dec. 21, 2009).

10.	 Michael Witt and Mark P. Newton, “Preparing Batch
Deposits for Digital Commons Repositories,” 2008, http://docs
.lib.purdue.edu/lib_research/96/ (accessed Dec. 21, 2009).

11.	 Lesley Drysdale, “Importing Records from Reference Man-
ager into GNU EPrints,” 2004, http://hdl.handle.net/1905/175
(accessed Dec. 21, 2009).

12.	 R. John Robertson, “Evaluation of Metadata Workflows
for the Glasgow ePrints and DSpace Services,” 2006, http://hdl
.handle.net/1905/615 (accessed Dec. 21, 2009); William J. Nixon
and Morag Greig, “Populating the Glasgow ePrints Service:
A Mediated Model and Workflow,” 2005, http://hdl.handle
.net/1905/387 (accessed Dec. 21, 2009).

13.	 Tim Ribaric, “Automatic Preparation of ETD Material
from the Internet Archive for the DSpace Repository Platform,”
Code4Lib Journal no. 8 (Nov. 23, 2009), http://journal.code4lib.org/
articles/2152 (accessed Dec. 21, 2009).

14.	 Randall Floyd, “Automated Electronic Thesis and Disser-
tations Ingest,” (Mar. 30, 2009), http://wiki.dlib.indiana.edu/
confluence/x/01Y (accessed Dec. 21, 2009).

15.	 Shawn Averkamp and Joanna Lee, “Repurposing Pro-

batch loading workflows are dependent upon the quality
of data and metadata loaded. Along with testing scripts
and checking imported metadata by first batch loading to
a development or staging environment, quality control of
the supplied metadata is an integral step. The flexibility of
Perl allowed testing and revising to accommodate prob-
lems encountered with how the metadata was supplied
for the heterogeneous collections batch loaded into the
Knowledge Bank. However, toward the goal of standard-
izing batch loading workflows, the staff working with the
Knowledge Bank iteratively refined not only the scripts
but also the metadata requirements for each project and
how those were communicated to the data suppliers
with mappings, explicit metadata examples, and sample
desired results. The efficiency of batch loading workflows
is greatly enhanced by consistent data and basic stan-
dards for how metadata is supplied.

Batch loading is not only an extremely efficient means
of populating an institutional repository, it is also a value-
added service that can increase buy-in from the wider
campus community. It is hoped that by openly sharing
examples of our batch loading scripts we are contributing
to the development of an open library of code that can be
borrowed and adapted by the library community toward
future institutional repository success stories.

■■ Acknowledgments

I would like to thank Conrad Gratz, of OSU OIT, and
Andrew Wang, formerly of OSUL. Gratz wrote the shell
scripts and the majority of the Perl scripts used for auto-
mating the Knowledge Bank item import process and ran
the corresponding batch loads. The early Perl scripts used
for batch loading into the Knowledge Bank, including the
first phase of OJS and MSS, were written by Wang. Parts
of those early Perl scripts written by Wang were borrowed
for subsequent scripts written by Gratz. Gratz provided
the annotated scripts appearing in the appendixes and
consulted with the author regarding the description of the
scripts. I would also like to thank Amanda J. Wilson, a for-
mer metadata librarian for OSUL, who was instrumental to
the success of many of the batch loading workflows created
for the Knowledge Bank.

References and Notes

1.	 The Ohio State University Knowledge Bank, “Institu-
tional Repository Policies,” 2007, http://library.osu.edu/sites/
kbinfo/policies.html (accessed Dec. 21, 2009). The Knowledge
Bank homepage can be found at https://kb.osu.edu/dspace/
(accessed Dec. 21, 2009).

2.	 Margret Branschofsky et al., “Evolving Meta-
data Needs for an Institutional Repository: MIT’s DSpace,”

124   IN FORMATION TECHNOLOGY AND LIBRARIES   |  S eptember 2010

Appendix E. MSS 2009 Batch Loading Scripts

-- mkxml2009.pl --

#!/usr/bin/perl

use Encode; 	 	 # Routines for UTF encoding
use Text::xSV;	 	 # Routines to process CSV files.
use File::Basename;

Open and read the comma separated metadata file.
my $csv = new Text::xSV;
#$csv->set_sep('	 '); # Use for tab separated files.
$csv->open_file("MSS2009.csv");
$csv->read_header();	# Process the CSV column headers.

Constants for file and directory names.
$basedir = "/common/batch/input/mss/";
$indir = "$basedir/2009";
$xmldir= "./2009xml";
$imagesubdir= "processed_images”;
$filename = "dublin_core.xml";

Process each line of metadata, one line per item.
$linenum = 1;
while ($csv->get_row()) {
 # This divides the item's metadata into fields, each in its own variable.
 my (
	 $identifier,
	 $title,
	 $creators,
	 $description_abstract,
	 $issuedate,
	 $description,
	 $description2,

Appendixes A–D available at http://ital-ica.blogspot.com/

Quest Metadata for Batch Ingesting ETDs into an Institutional
Repository,” Code4Lib Journal no. 7 (June 26, 2009), http://journal
.code4lib.org/articles/1647 (accessed Dec. 21, 2009).

16.	 Tim Brody, Registry of Open Access Repositories (ROAR),
http://roar.eprints.org/ (accessed Dec. 21, 2009).

17.	 DuraSpace, DSpace, http://www.dspace.org/ (accessed
Dec. 21, 2009).

18.	 Dublin Core Metadata Initiative Libraries Working Group,
“DC-Library Application Profile (DC-Lib),” http://dublincore
.org/documents/2004/09/10/library-application-profile/
(accessed Dec. 21, 2009).

19.	 The Ohio State University Knowledge Bank Policy Com-

mittee, “OSU Knowledge Bank Metadata Application Profile,”
http://library.osu.edu/sites/techservices/KBAppProfile.php
(accessed Dec. 21, 2009).

20.	 Ohio Journal of Science (Ohio Academy of Sci-
ence), Knowledge Bank community, http://hdl.handle
.net/1811/686 (accessed Dec. 21, 2009); OSU International Sym-
posium on Molecular Spectroscopy, Knowledge Bank commu-
nity, http://hdl.handle.net/1811/5850 (accessed Dec. 21, 2009).

21.	 Ohio Journal of Science (Ohio Academy of Science), Ohio
Journal of Science: Volume 74, Issue 3 (May, 1974), Knowledge
Bank collection, http://hdl.handle.net/1811/22017 (accessed
Dec. 21, 2009).

Batch Loading Collections into DSpace   |   Walsh    125

	 $abstract,
	 $gif,
	 $ppt,
) = $csv->extract(
	 "Talk_id",
	 "Title",
	 "Creators",
	 "Abstract",
	 "IssueDate",
	 "Description",
	 "AuthorInstitution",
	 "Image_file_name",
	 "Talk_gifs_file",
	 "Talk_ppt_file"
);

 $creatorxml = "";
 # Multiple creators are separated by ';' in the metadata.
 if (length($creators) > 0) {
	 # Create XML for each creator.
 @creatorlist = split(/;/,$creators);
 foreach $creator (@creatorlist) {
 if (length($creator) > 0) {
 $creatorxml .= '<dcvalue element="creator" qualifier="none">'
 .$creator.’</dcvalue>’.”\n “;
 }
 }
 } # Done processing creators for this item.

 # Create the XML string for the Abstract.
 $abstractxml = "";
 if (length($description_abstract) > 0) {
	 # Convert special metadata characters for use in xml/html.
 $description_abstract =~ s/\&/&/g;
 $description_abstract =~ s/\>/>/g;
 $description_abstract =~ s/\</</g;
	 # Build the Abstract in XML.
 $abstractxml = '<dcvalue element="description" qualifier="abstract">'
 .$description_abstract.'</dcvalue>';
 }

 # Create the XML string for the Description.
 $descriptionxml = "";
 if (length($description) > 0) {
	 # Convert special metadata characters for use in xml/html.
 $description=~ s/\&/&/g;
 $description=~ s/\>/>/g;
 $description=~ s/\</</g;
	 # Build the Description in XML.
 $descriptionxml = '<dcvalue element="description" qualifier="none">'
 .$description.'</dcvalue>';
 }

Appendix E. MSS 2009 Batch Loading Scripts (cont.)

126   IN FORMATION TECHNOLOGY AND LIBRARIES   |  S eptember 2010

 # Create the XML string for the Author Institution.
 $description2xml = "";
 if (length($description2) > 0) {
	 # Convert special metadata characters for use in xml/html.
 $description2=~ s/\&/&/g;
 $description2=~ s/\>/>/g;
 $description2=~ s/\</</g;
	 # Build the Author Institution XML.
 $description2xml = '<dcvalue element="description" qualifier="none">'
 .'Author Institution: '.$description2.'</dcvalue>';
 }

 # Convert special characters in title.
 $title=~ s/\&/&/g;
 $title=~ s/\>/>/g;
 $title=~ s/\</</g;

 # Create XML File
 $subdir = $xmldir."/".$linenum;
 system "mkdir $basedir/$subdir";
 open(fh,">:encoding(UTF-8)", "$basedir/$subdir/$filename");
 print fh <<"XML";
<dublin_core>
 <dcvalue element="identifier" qualifier="none">$identifier</dcvalue>
 <dcvalue element="title" qualifier="none">$title</dcvalue>
 <dcvalue element="date" qualifier="issued">$issuedate</dcvalue>
 $abstractxml
 $descriptionxml
 $description2xml
 <dcvalue element="type" qualifier="none">Article</dcvalue>
 <dcvalue element="language" qualifier="iso">en</dcvalue>
 $creatorxml
</dublin_core>
XML
 close($fh);

Create contents file and move files to the load set.

 # Copy item files into the load set.
 if (defined($abstract) && length($abstract) > 0) {
 system "cp $indir/$abstract $basedir/$subdir";
 }

 $sourcedir = substr($abstract, 0, 5);
 if (defined($ppt) && length($ppt) > 0) {
 system "cp $indir/$sourcedir/$sourcedir/*.* $basedir/$subdir/";
 }

 if (defined($gif) && length($gif) > 0) {
 system "cp $indir/$sourcedir/$imagesubdir/*.* $basedir/$subdir/";
 }

 # Make the 'contents' file and fill it with the file names.

Appendix E. MSS 2009 Batch Loading Scripts (cont.)

Batch Loading Collections into DSpace   |   Walsh    127

 system "touch $basedir/$subdir/contents";

 if (defined($gif) && length($gif) > 0
 && -d "$indir/$sourcedir/$imagesubdir") {
 # Sort items in reverse order so they show up right in DSpace.
 # This is a hack that depends on how the DB returns items
 # in unsorted (physical) order. There are better ways to do this.
 system "cd $indir/$sourcedir/$imagesubdir/;"
 . " ls *[0-9][0-9].* | sort -r >> $basedir/$subdir/contents";
 system "cd $indir/$sourcedir/$imagesubdir/;"
 . " ls *[a-zA-Z][0-9].* | sort -r >> $basedir/$subdir/contents";
 }

 if (defined($ppt) && length($ppt) > 0
 && -d "$indir/$sourcedir/$sourcedir") {
 system "cd $indir/$sourcedir/$sourcedir/;"
 . " ls *.* >> $basedir/$subdir/contents";
 }

 # Put the Abstract in last, so it displays first.
 system "cd $basedir/$subdir; basename $abstract >>"
 . " $basedir/$subdir/contents";

 $linenum++;

} # Done processing an item.

--
-- import.sh –-
#!/bin/sh
#
Import a collection from files generated on dspace
#
COLLECTION_ID=1811/6635
EPERSON=[name removed]@osu.edu
SOURCE_DIR=./2009xml
BASE_ID=`basename $COLLECTION_ID`
MAPFILE=./map-dspace03-mss2009.$BASE_ID

/dspace/bin/dsrun org.dspace.app.itemimport.ItemImport --add --eperson=$EPERSON
--collection=$COLLECTION_ID --source=$SOURCE_DIR --mapfile=$MAPFILE

Appendix E. MSS 2009 Batch Loading Scripts (cont.)

