
76   I NFORMATION TECHNOLOGY AND LIBRARIES   |   June 2010

In this paper we discuss the design space of meth-
ods for integrating information from Web services into
websites. We focus primarily on client-side mash-ups,
in which code running in the user’s browser contacts
Web services directly without the assistance of an inter-
mediary server or proxy. To create such mash-ups, we
advocate the use of “widgets,” which are easy-to-use,
customizable HTML elements whose use does not require
programming knowledge. Although the techniques we
discuss apply to any Web-based information system, we
specifically consider how an OPAC can become both the
target of Web services integration and also a Web service
that provides information to be integrated elsewhere. We
describe three widget libraries we have developed, which
provide access to four Web services. These libraries have
been deployed by us and others.

Our contributions are twofold: We give practitioners
an insight into the trade-offs surrounding the appropri-
ate choice of mash-up model, and we present the specific
designs and use examples of three concrete widget
libraries librarians can directly use or adapt. All software
described in this paper is available under the LGPL Open
Source License.

■■ Background

Web-based information systems use a client-server archi-
tecture in which the server sends HTML markup to the
user’s browser, which then renders this HTML and dis-
plays it to the user. Along with HTML markup, a server
may send JavaScript code that executes in the user’s
browser. This JavaScript code can in turn contact the
original server or additional servers and include infor-
mation obtained from them into the rendered content
while it is being displayed. This basic architecture allows
for myriad possible design choices and combinations for
mash-ups. Each design choice has implications to ease of
use, customizability, programming requirements, hosting
requirements, scalability, latency, and availability.

Server-side mash-ups

In a server-side mash-up design, shown in figure 1, the
mash-up server contacts the base server and each source
when it receives a request from a client. It combines
the information received from the base server and the
sources and sends the combined HTML to the client.

Server-side mash-up systems that combine base and
mash-up servers are also referred to as data mash-up
systems. Such data mash-up systems typically provide a
Web-based configuration front-end that allows users to
select data sources, specify the manner in which they are
combined, and to create a layout for the entire mash-up.

Godmar Back and
Annette Bailey

Web Services and Widgets for
Library Information Systems

As more libraries integrate information from web services
to enhance their online public displays, techniques that
facilitate this integration are needed. This paper presents
a technique for such integration that is based on HTML
widgets. We discuss three example systems (Google Book
Classes, Tictoclookup, and MAJAX) that implement this
technique. These systems can be easily adapted without
requiring programming experience or expensive hosting.

T o improve the usefulness and quality of their
online public access catalogs (OPACs), more and
more librarians include information from addi-

tional sources into their public displays.1 Examples of
such sources include Web services that provide addi-
tional bibliographic information, social bookmarking and
tagging information, book reviews, alternative sources
for bibliographic items, table-of-contents previews, and
excerpts. As new Web services emerge, librarians quickly
integrate them to enhance the quality of their OPAC
displays. Conversely, librarians are interested in opening
the bibliographic, holdings, and circulation information
contained in their OPACs for inclusion into other Web
offerings they or others maintain. For example, by turn-
ing their OPAC into a Web service, subject librarians can
include up-to-the-minute circulation information in sub-
ject or resource guides. Similarly, university instructors
can use an OPAC’s metadata records to display citation
information ready for import into citation management
software on their course pages. The ability to easily create
such “mash-up” pages is crucial for increasing the vis-
ibility and reach of the digital resources libraries provide.

Although the technology to use Web services to create
mash-ups is well known, several practical requirements
must be met to facilitate its widespread use. First, any
environment providing for such integration should be
easy to use, even for librarians with limited programming
background. This ease of use must extend to environments
that include proprietary systems, such as vendor-provided
OPACs. Second, integration must be seamless and custom-
izable, allowing for local display preferences and flexible
styling. Third, the setup, hosting, and maintenance of
any necessary infrastructure must be low-cost and should
maximize the use of already available or freely accessible
resources. Fourth, performance must be acceptable, both in
terms of latency and scalability.2

Godmar Back (gback@cs.vt.edu) is Assistant Professor, Depart-
ment of Computer Science and Annette Bailey (afbailey@vt.edu)
is Assistant Professor, University Libraries, Virginia Tech Univer-
sity, Blacksburg.

Web Services and Widgets for Library Information Systems   |   Back and Bailey    77

Examples of such systems include Dapper and Yahoo!
Pipes.3 These systems require very little programming
knowledge, but they limit mash-up creators to the func-
tionality supported by a particular system and do not
allow the user to leverage the layout and functionality of
an existing base server, such as an existing OPAC.

Integrating server-side mash-up systems with pro-
prietary OPACs as the base server is difficult because the
mash-up server must parse the OPAC’s output before
integrating any additional information. Moreover, users
must now visit—or be redirected to—the URL of the
mash-up server. Although some emerging extensible
OPAC designs provide the ability to include information
from external sources directly and easily, most currently
deployed systems do not.4 In addition, those mash-up
servers that do usually require server-side programming
to retrieve and integrate the information coming from
the mash-up sources into the page. The availability of
software libraries and the use of special purpose markup
languages may mitigate this requirement in the future.

From a performance scalability point of view, the
mash-up server is a bottleneck in server-side mash-ups
and therefore must be made large enough to handle the
expected load of end-user requests. On the other hand,
the caching of data retrieved from mash-up sources is
simple to implement in this arrangement because only
the mash-up server contacts these sources. Such caching
reduces the frequency with which requests have to be
sent to sources if their data is cacheable, that is, if real-
time information is not required.

The latency in this design is the sum of the time
required for the client to send a request to the mash-
up server and receive a reply, plus the processing time
required by the server, plus the time incurred by sending

a request and receiving a reply from the last responding
mash-up source. This model assumes that the mash-up
server contacts all sources in parallel, or as soon as the
server knows that information from a source should be
included in a page.

The availability of the system depends on the avail-
ability of all mash-up sources. If a mash-up source does
not respond, the end user must wait until such failure
is apparent to the mash-up server via a timeout. Finally,
because the mash-up server acts as a client to the base
and source servers, no additional security considerations
apply with respect to which sources may be contacted.
There also are no restrictions on the data interchange for-
mat used by source servers as long as the mash-up server
is able to parse the data returned.

Client-side mash-ups

In a client-side setup, shown in figure 2, the base server
sends only a partial website to the client, along with
JavaScript code that instructs the client which other sources
of information to contact. When executed in the browser,
this JavaScript code retrieves the information from the
mash-up sources directly and completes the mash-up.

The primary appeal of client-side mashing is that no
mash-up server is required, and thus the URL that users
visit does not change. Consequently, the mash-up server
is no longer a bottleneck. Equally important, no main-
tenance is required for this server, which is particularly
relevant when libraries use turnkey solutions that restrict
administrative access to the machine housing their OPAC.
On the other hand, without a mash-up server, results from
mash-up sources can no longer be centrally cached. Thus
the mash-up sources themselves must be sufficiently

Figure 1. Server-side mash-up construction Figure 2. Client-side mash-up construction

78   I NFORMATION TECHNOLOGY AND LIBRARIES   |   June 2010

scalable to handle the expected number of requests. As a
load-reducing strategy, mash-up sources can label their
results with appropriate expiration times to influence the
caching of results in the clients’ browsers.

Availability is increased because the mash-up degrades
gracefully if some of the mash-up sources fail, since the
information from the remaining sources can still be dis-
played to the user. Assuming that requests are sent by
the client in parallel or as soon as possible, and assuming
that each mash-up source responds with similar latency to
requests sent by the user’s browser as to requests sent by
a mash-up server, the latency for a client-side mash-up is
similar to the server-side mash-up. However, unlike in the
server-side approach, the page designer has the option to
display partial results to the user while some requests are
still in progress, or even to delay sending some requests
until the user explicitly requests the data by clicking on a
link or other element on the page.

Because client-side mash-ups rely on JavaScript code
to contact Web services directly, they are subject to a
number of restrictions that stem from the security model
governing the execution of JavaScript code in current
browsers. This security model is designed to protect the
user from malicious websites that could exploit client-side
code and abuse the user’s credentials to retrieve HTML or
XML data from other websites to which a user has access.
Such malicious code could then relay this potentially
sensitive data back to the malicious site. To prevent such
attacks, the security model allows the retrieval of HTML
text or XML data only from sites within the same domain
as the origin site, a policy commonly known as same-
origin policy. In figure 2, sources A and B come from the
same domain as the page the user visits.

The restrictions of the same-origin policy can be
avoided by using the JavaScript Object Notation (JSON)
interchange format.5 Because client-side code may retrieve
and execute JavaScript code served from any domain,
Web services that are not co-located with the origin site
can make their results available using JSON. Doing so
facilitates their inclusion into any page, independent of
the domain from which it is served (see source C in figure
2). Many existing Web services already provide an option
to return data in JSON format, perhaps along with other
formats such as XML. For Web services that do not, a
proxy server may be required to translate the data com-
ing from the service into JSON. If the implementation of a
proxy server is not feasible, the Web service is usable only
on pages within the same domain as the website using it.

Client-side mash-ups lend themselves naturally to
enhancing the functionality of existing, proprietary OPAC
systems, particularly when a vendor provides only lim-
ited extensibility. Because they do not require server-side
programming, the absence of a suitable vendor-provided
server-side programming interface does not prevent

their creation. Oftentimes, vendor-provided templates or
variables can be suitably adapted to send the necessary
HTML markup and JavaScript code to the client.

The amount of JavaScript code a librarian needs to write
(or copy from a provided example) determines both the
likelihood of adoption and the maintainability of a given
mash-up creation. The less JavaScript code there is to write,
the larger the group of librarians who feel comfortable try-
ing and adopting a given implementation. The approach
of using HTML widgets hides the use of JavaScript almost
entirely from the mash-up creator. HTML widgets repre-
sent specially composed markup, which will be replaced
with information coming from a mash-up source when the
page is rendered. Because the necessary code is contained
in a JavaScript library, adapters do not need to understand
programming to use the information coming from the
Web service. Finally, HTML widgets are also preferable
for JavaScript-savvy users because they create a layer of
abstraction over the complexity and browser dependencies
inherent in JavaScript programming.

■■ The Google Book Classes
Widget Library

To illustrate our approach, we present a first example that
allows the integration of data obtained from Google Book
Search into any website, including OPAC pages. Google
Book Search provides access to Google’s database of book
metadata and contents. Because of the company’s book
scanning activities as well as through agreements with
publishers, Google hosts scanned images of many book
jackets as well as partial or even full previews for some
books. Many libraries are interested in either using the
book jackets when displaying OPAC records or alerting
their users if Google can provide a partial or full view
of an item a user selected in their catalog, or both.6 This
service can help users decide whether to borrow the book
from the library.

The Google Book Search Dynamic Link API

The Google Book Search Dynamic Link API is a JSON-
based Web service through which Google provides certain
metadata for items it has indexed. It can be queried using
bibliographic identifiers such as ISBN, OCLC number, or
Library of Congress Control Number (LCCN). It returns
a small set of data that includes the URL of a book jacket
thumbnail image, the URL of a page with bibliographic
information, the URL of a preview page (if available), as
well as information about the extent of any preview and
whether the preview viewer can be embedded directly
into other pages. Table 1 shows the JSON result returned
for an example ISBN.

Web Services and Widgets for Library Information Systems   |   Back and Bailey    79

Widgetization

To facilitate the easy integration of this service into web-
sites without JavaScript programming, we developed a
widget library. From the adapter’s perspective, the use
of these widgets is extremely simple. The adapter places
HTML or <div> tags into the page where they
want data from Google Book Search to display. These tags
contain an HTML <title> attribute that acts as an identifier
to describe the bibliographic item for which information
should be retrieved. It may contain its ISBN, OCLC num-
ber, or LCCN. In addition, the tags also contain one or more
HTML <class> attributes to describe which processing
should be done with the information retrieved from Google
to integrate it into the page. These classes can be combined
with a list of traditional CSS classes in the <class> attribute
to apply further style and formatting control.

Examples

As an example, consider the following HTML an adapter
may use in a page:

<span title=“ISBN:0596000278” class=“gbs
-thumbnail gbs-link-to-preview”>

When processed by the Google Book Classes widget
library, the class “gbs-thumbnail” instructs the widget to
embed a thumbnail image of the book jacket for ISBN
0596000278, and “gbs-link-to-preview” provides instruc-
tions to wrap the tag in a hyperlink pointing
to Google’s preview page. The result is as if the server
had contacted Google’s Web service and constructed the
HTML shown in example 1 in table 2, but the mash-up

creator does not need to be concerned with the mechanics
of contacting Google’s service and making the necessary
manipulations to the document.

Example 2 in table 2 demonstrates a second possible
use of the widget. In this example, the creator’s intent is
to display an image that links to Google’s information
page if and only if Google provides at least a partial
preview for the book in question. This goal is accom-
plished by placing the image inside the span and using
style=“display:none” to make the span initially invisible.
The span is made visible only if a preview is available at
Google, displaying the hyperlinked image. The full list of
features supported by the Google Book Classes widget
library can be found in table 3.

Integration with legacy OPACs

The approach described thus far assumes that the mash-
up creator has sufficient control over the HTML markup
that is sent to the user. This assumption does not always
hold if the HTML is produced by a vendor-provided
system, since such systems automatically generate most
of the HTML used to display OPAC search results or indi-
vidual bibliographic records. If the OPAC provides an
extension system, such as a facility to embed customized
links to external resources, it may be used to generate the
necessary HTML by utilizing variables (e.g., “@#ISBN@”
for ISBN numbers) set by the OPAC software.

If no extension facility exists, accommodations by
the widget library are needed to maintain the goal of not
requiring any programming on the part of the adapter. We
implemented such accommodations to facilitate the use of
Google Book Classes within a III Millennium OPAC.7 We
used magic strings such as “ISBN:millennium.record” in a

Table 1. Sample Request and Response for Google Book Search Dynamic Link API

Request:

http://books.google.com/books?bibkeys=ISBN:0596000278&jscmd=viewapi&callback=process

JSON Response:

process({
“ISBN:0596000278”:
{ “bib_key”: “ISBN:0596000278”,
“info_url”: “http://books.google.com/books?id=ezqe1hh91q4C\x26source=gbs_ViewAPI”,
“preview_url”: “http://books.google.com/books?id=ezqe1hh91q4C\x26printsec=frontcover\x26
source=gbs_ViewAPI”,
“thumbnail_url”: “http://bks4.books.google.com/books?id=ezqe1hh91q4C\x26printsec=frontcover\x26
img=1\x26zoom=5\x26sig=ACfU3U2d1UsnXw9BAQd94U2nc3quwhJn2A”,
“preview”: “partial”,
“embeddable”: true
}
});

80   I NFORMATION TECHNOLOGY AND LIBRARIES   |   June 2010

Table 2. Example of client-side processing by the Google Book Classes widget library

Example 1: HTML Written by Adapter Browser Display

Resultant HTML after Client-Side Processing

<a href=“http://books.google.com/books?id=ezqe1hh91q4C&
 printsec=frontcover&source=gbs_ViewAPI”>

 <img src=“http://bks3.books.google.com/books?id=ezqe1hh91q4C&
 amp;printsec=frontcover&img=1&zoom=5&
 sig=ACfU3U2d1UsnXw9BAQd94U2nc3quwhJn2A” />

Example 2: HTML Written by Adapter Browser Display

<span style=“display: none” title=“ISBN:0596000278”
 class=“gbs-link-to-info gbs-if-partial-or-full”>
 <img src=“http://www.google.com/intl/en/googlebooks/images/
 gbs_preview_button1.gif” />

Resultant HTML after Client-Side Processing

<a href=”http://books.google.com/books?id=ezqe1hh91q4C&
 source=gbs_ViewAPI”>

 <img src=“http://www.google.com/intl/en/googlebooks/images/
 gbs_preview_button1.gif” />

Table 3. Supported Google Book classes

Google Book Class Meaning

gbs-thumbnail

gbs-link-to-preview

gbs-link-to-info

gbs-link-to-thumbnail

gbs-embed-viewer

gbs-if-noview

gbs-if-partial-or-full

gbs-if-partial

gbs-if-full

gbs-remove-on-failure

Include an <img...> embedding the thumbnail image

Wrap span/div in link to preview at Google Book Search (GBS)

Wrap span/div in link to info page at GBS

Wrap span/div in link to thumbnail at GBS

Directly embed a viewer for book’s content into the page, if possible

Keep this span/div only if GBS reports that book’s viewability is “noview”

Keep this span/div only if GBS reports that book’s viewability is at least “partial”

Keep this span/div only if GBS reports that book’s viewability is “partial”

Keep this span/div only if GBS reports that book’s viewability is “full”

Remove this span/div if GBS doesn’t return book information for this item

<title> attribute to instruct the widget library to harvest the
ISBN from the current page via screen scraping. Figure 3
provides an example of how a Google Book Classes widget
can be integrated into an OPAC search results page.

■■ The Tictoclookup Widget Library

The ticTOCs Journal Table of Contents Service is a free
online service that allows academic researchers and

Web Services and Widgets for Library Information Systems   |   Back and Bailey    81

other users to keep up with newly published research by
giving them access to thousands of journal tables of con-
tents from multiple publishers.8 The ticTOCs consortium
compiles and maintains a dataset that maps ISSNs and
journal titles to RSS-feed URLs for the journals’ tables of
contents.

The Tictoclookup Web service

We used the ticTOCs dataset to create a simple JSON Web
service called “Tictoclookup” that returns RSS-feed URLs
when queried by ISSN and, optionally, by journal title.
Table 4 shows an example query and response.

To accommodate different hosting scenarios, we
created two implementations of this Tictoclookup: a
standalone and a cloud-based implementation. The
standalone version is implemented as a Python Web
application conformant to the Web Services Gateway
Interface (WSGI) specification. Hosting this version
requires access to a Web server that supports a WSGI-
compatible environment, such as Apache’s mod_wsgi.
The Python application reads the ticTOCs dataset and
responds to lookup requests for specific ISSNs. A cron
job downloads the most up-to-date version of the dataset
periodically.

The cloud version of the Tictoclookup service is
implemented as a Google App Engine (GAE) applica-
tion. It uses the highly scalable and highly available GAE
Datastore to store ticTOCs data records. GAE applications
run on servers located in Google’s regional data centers so
that requests are handled by a data center geographically
close to the requesting client. As of June 2009, Google
hosting of GAE applications is free, which includes a free
allotment of several computational resources. For each
application, GAE allows quotas of up to 1.3 MB requests
and the use of up to 10 GB of bandwidth per twenty-four-
hour period. Although this capacity is sufficient for the
purposes of many small- and medium-size institutions,
additional capacity can be purchased at a small cost.

Widgetization

To facilitate the easy integration of this service into websites
without JavaScript programming, we developed a widget
library. Like Google Book Classes, this widget library is
controlled via HTML attributes associated with HTML
 or <div> tags that are placed into the page where
the user decides to display data from the Tictoclookup
service. The HTML <title> attribute identifies the journal by
its ISSN or its ISSN and title. As with Google Book Classes,

Figure 3. Sample use of Google Book Classes in an OPAC results page

Table 4. Sample request and response for ticTOCs lookup Web service

Request:

http://tictoclookup.appspot.com/0028-0836?title=Nature&jsoncallback=process

JSON Response:

process({
 “lastmod”: “Wed Apr 29 05:42:36 2009”,
 “records”: [{
 “title”: “Nature”,
 “rssfeed”: http://www.nature.com/nature/current_issue/rss
 }],
 “issn”: “00280836”
});

82   I NFORMATION TECHNOLOGY AND LIBRARIES   |   June 2010

the HTML <class> attribute describes the desired process-
ing, which may contain traditional CSS classes.

Example

Consider the following HTML an adapter may use in a
page:

<span style=“display:none” 	
 class=“tictoc-link tictoc-preview tictoc-alternate-link” 	
 title=“ISSN:00280836: Nature”> 	
Click to subscribe to Table of Contents for this journal	

When processed by the Tictoclookup widget library,
the class “tictoc-link” instructs the widget to wrap the
span in a link to the RSS feed at which the table of con-
tent is published, allowing users to subscribe to it. The
class “tictoc-preview” associates a tooltip element with the
span, which displays the first entries of the feed when the
user hovers over the link. We use the Google Feeds API,
another JSON-based Web service, to retrieve a cached
copy of the feed. The “tictoc-alternate-link” class places
an alternate link into the current document, which in
some browsers triggers the display of the RSS feed icon

Figure 4. Sample use of tictoclookup classes

in the status bar. The element, which is initially
invisible, is made visible if and only if the Tictoclookup
service returns information for the given pair of ISSN and
title. Figure 4 provides a screenshot of the display if the
user hovers over the link.

As with Google Book Classes, the mash-up creator does
not need to be concerned with the mechanics of contacting
the Tictoclookup Web service and making the necessary
manipulations to the document. Table 5 provides a com-
plete overview of the classes Tictoclookup supports.

Integration with legacy OPACs

Similar to the Google Book Classes widget library, we
implemented provisions that allow the use of Tictoclookup
classes on pages over which the mash-up creator has
limited control. For instance, specifying a title attribute
of “ISSN:millennium.issnandtitle” harvests the ISSN and
journal title from the III Millennium’s record display page.

■■ MAJAX

Whereas the widget libraries discussed thus far integrate
external Web services into an OPAC
display, MAJAX is a widget library
that integrates information coming
from an OPAC into other pages,
such as resource guides or course
displays. MAJAX is designed
for use with a III Millennium
Integrated Library System (ILS)
whose vendor does not provide a
Web-services interface. The tech-
niques we used, however, extend
to other OPACs as well. Like many

Table 5. Supported Tictoclookup classes

Tictoclookup Class Meaning

tictoc-link

tictoc-preview

tictoc-embed-n

tictoc-alternate-link

tictoc-append-title

Wrap span/div in link to table of contents

Display tooltip with preview of current entries

Embed preview of first n entries

Insert <link rel=“alternate”> into document

Append the title of the journal to the span/div

Web Services and Widgets for Library Information Systems   |   Back and Bailey    83

legacy OPACs, Millennium does not
only lack a Web-services interface, but
lacks any programming interface to
the records contained in the system
and does not provide access to the
database or file system of the machine
housing the OPAC.

Providing OPAC data as a
Web service

We implemented two methods to
access records from the Millennium
OPAC using bibliographic identifi-
ers such as ISBN, OCLC number, bibliographic record
number, and item title. Both methods provide access
to complete MARC records and holdings information,
along with locations and real-time availability for each
held item. MAJAX extracts this information via screen-
scraping from the MARC record display page. As with
all screen-scraping approaches, the code performing the
scraping must be updated if the output format provided
by the OPAC changes. In our experience, such changes
occur at a frequency of less than once per year.

The first method, MAJAX 1, implements screen scrap-
ing using JavaScript code that is contained in a document
placed in a directory on the server (/screens), which
is normally used for supplementary resources, such as
images. This document is included in the target page as
a hidden HTML <iframe> element (see frame B in figure
2). Consequently, the same-domain restriction applies to
the code residing in it. MAJAX 1 can thus be used only on
pages within the same domain—for instance, if the OPAC
is housed at opac.library.university.edu, MAJAX 1 may
be used on all pages within *.university.edu (not merely
*.library.university.edu). The key advantage of MAJAX 1
is that no additional server is required.

The second method, MAJAX 2, uses an intermediary
server that retrieves the data from the OPAC, translates
it to JSON, and returns it to the client. This method,
shown in figure 5, returns JSON data and therefore does
not suffer from the same-domain restriction. However,
it requires hosting the MAJAX 2 Web service. Like the
Tictoclookup Web service, we implemented the MAJAX 2
Web service using Python conformant to WSGI. A single
installation can support multiple OPACs.

Widgetization

The MAJAX widget library allows the integration of
both MAJAX 1 and MAJAX 2 data into websites without
JavaScript programming. The tags function as
placeholders, and <title> and <class> attributes describe
the desired processing. MAJAX provides a number of
“MAJAX classes,” multiple of which can be specified.

These classes allow a mash-up creator to insert a large
variety of bibliographic information, such as the val-
ues of MARC fields. Classes are also provided to insert
fully formatted, ready-to-copy bibliographic references
in Harvard style, live circulation information, links to
the catalog record, links to online versions of the item
(if applicable), a ready-to-import RIS description of the
item, and even images of the book cover. A list of classes
MAJAX supports is provided in table 6.

Examples

Figure 6 provides an example use of MAJAX widgets.
Four tags expand into the book cover, a complete
Harvard-style reference, the valid of a specific MARC
field (020), and a display of the current availability of the
item, wrapped in a link to the catalog record. Texts such
as “copy is available” shown in figure 6 are localizable.
Even though there are multiple MAJAX tags that
refer to the same ISBN, the MAJAX widget library will
contact the MAJAX 1 or MAJAX 2 Web service only once
per identifier, independent of how often it is used in a
page. To manage the load, the MAJAX client site library
can be configured to not exceed a maximum number of
requests per second, per client.

All software described in this paper is available under
the LGPL Open Source License. The MAJAX libraries
have been used by us and others for about two years. For
instance, the “New Books” list in our library uses MAJAX
1 to provide circulation information. Faculty members at
our institution are using MAJAX to enrich their course
websites. A number of libraries have adopted MAJAX 1,
which is particularly easy to host because no additional
server is required.

■■ Related work

Most ILSs in use today do not provide suitable Web-services
interfaces to access either bibliographic information

Figure 5. Architecture of the MAJAX 2 Web service

84   I NFORMATION TECHNOLOGY AND LIBRARIES   |   June 2010

or availability data.9 This
shortcoming is addressed by
multiple initiatives. The ILS
Discovery Interface task force
(ILS-DI) created a set of rec-
ommendations that facilitate
the integration of discovery
interfaces with legacy ILSs,
but does not define a concrete
API.10 Related, the ISO 20775
Holdings standard describes an
XML schema to describe the
availability of items across sys-
tems, but does not describe an
API for accessing them.11 Many
ILSs provide a Z39.50 interface
in addition to their HTML-
based Web OPACs, but Z39.50
does not provide standardized
holdings and availability.12

Nevertheless, there is hope
within the community that
ILS vendors will react to their
customers’ needs and provide
Web-services interfaces that
implement these recommenda-
tions. The Jangle project provides
an API and an implementation
of the ILS-DI recommendations
through a Representations State
Transfer (REST)–based interface
that uses the Atom Publishing
Protocol (APP).13 Jangle can be
linked to legacy ILSs via connec-
tors. The use of the XML-based
APP prevents direct access from
client-side JavaScript code, how-
ever. In the future, adoption and
widespread implementation of
the W3C working draft on cross-
origin resource sharing may
relax the same-origin restriction
in a controlled fashion, and thus allow access to APP feeds
from JavaScript across domains.14

Screen-scraping is a common technique used to over-
come the lack of Web-services interfaces. For instance,
OCLC’s WorldCat Local product obtains access to avail-
ability information from legacy ILSs in a similar fashion
as our MAJAX 2 service.15 Whereas the Web services used
or created in our work exclusively use a REST-based
model and return data in JSON format, interfaces based
on SOAP (formerly Simple Object Access Protocol) whose
semantics are described by a WSDL specification provide
an alternative if access from within client-side JavaScript
code is not required.16

HTML Written by Adapter

<table width=“340”><tr><td>

 </td><td>

 ISBN:

 <span class=“majax-linktocatalogmajax-showholdings”
 title=“i1843341662”>
</td></tr></table>

Display in Browser after Processing

Dahl, Mark., Banerjee, Kyle., Spalti,
Michael., 2006, Digital libraries :
integrating content and systems /
Oxford, Chandos Publishing,
xviii, 203 p.
ISBN: 1843341662 (hbk.)
1 copy is available

Figure 6. Example use of MAJAX widgets

OCLC Grid Services provides REST-based Web-services
interfaces to several databases, including the WorldCat
Search API and identifier services such as xISBN, xISSN,
and xOCLCnum for FRBR-related metadata.17 These ser-
vices support XML and JSON and could benefit from
widgetization for easier inclusion into client pages.

The use of HTML markup to encode processing
instructions is common in JavaScript frameworks, such
as YUI or Dojo, which use <div> elements with custom-
defined attributes (so-called expando attributes) for this
purpose.18 Google Gadgets uses a similar technique as
well.19 The widely used Context Objects in Spans (COinS)�
specification exploits tags to encode OpenURL

Table 6. Selected MAJAX classes

MAJAX Class Replacement
majax-marc-FFF-s
majax-marc-FFF
majax-syndetics-*
majax-showholdings
majax-showholdings-brief
majax-endnote
majax-ebook
majax-linktocatalog
majax-harvard-reference
majax-newline
majax-space

MARC field FFF, subfields
concatenation of all subfields in field FFF
book cover image
current holdings and availability information
…in brief format
RIS version of record
link to online version, if any
link to record in catalog
reference in Harvard style
newline
space

Web Services and Widgets for Library Information Systems   |   Back and Bailey    85

techniques for the seamless inclusion of information
from Web services into websites. We considered the
cases where an OPAC is either the target of such integra-
tion or the source of the information being integrated.
We focused on client-side techniques in which each
user’s browser contacts Web services directly because this
approach lends itself to the creation of HTML widgets.
These widgets allow the integration and customization of
Web services without requiring programming. Therefore
nonprogrammers can become mash-up creators.

We described in detail the functionality and use of
several widget libraries and Web services we built. Table
7 provides a summary of the functionality and hosting
requirements for each system discussed. Although the
specific requirements for each system differ because of
their respective nature, all systems are designed to be
deployable with minimum effort and resource require-
ments. This low entry cost, combined with the provision
of a high-level, nonprogramming interface, constitute two
crucial preconditions for the broad adoption of mash-up
techniques in libraries, which in turn has the potential to

context objects in pages for processing by client-side
extension.20 LibraryThing� uses client-side mash-up tech-
niques to incorporate a social tagging service into OPAC
pages.21 Although their technique uses a <div> ele-
ment as a placeholder, it does not allow customization
via classes—the changes to the content are encoded in
custom-generated JavaScript code for each library that
subscribes to the service.

The Juice Project� shares our goal of simplifying the
enrichment of OPAC pages with content from other
sources.22 It provides a set of reusable components that
is directed at JavaScript programmers, not librarians.
In the computer-science community, multiple emerg-
ing projects investigate how to simplify the creation of
server-side data mash-ups by end user programmers.23

■■ Conclusion

This paper explored the design space of mash-up

Table 7. Summary of features and requirements for the widget libraries presented in this paper

Majax 1 Majax 2
Google Book
Classes

Tictoclookup
Classes

Web Service Screen Scraping III
Record Display

JSON Proxy for III
Record Display

Google Book Search
Dynamic Link API
books.google.com

ticTOC Cloud
Application
tictoclookup
.appspot.com

Hosted By Existing Millennium
Installation /screens

WSGI/Python Script
on libx.lib.vt.edu

Google, Inc. Google, Inc. via
Google App Engine

Data Provenance Your OPAC Your OPAC Google JISC (www.tictocs
.ac.uk)

Additional Cost N/A Can use libx.lib.vt.edu
for testing, must run
WSGI-enabled web
server in production

Free, but subject
to Google Terms of
Service

Generous free quota,
pay per use beyond
that

Same Domain
Restriction

Yes No No No

Widgetization majax.js: class-based: majax- classes gbsclasses.js:class-
based: gbs-

tictoc.js:class-based:
tictoc-

Requires JavaScript
programming

No No No No

Requires Additional
Server

No Yes
(Apache+mod_wsgi)

No No (if using GAE),
else need
Apache+mod_wsgi

III Bibrecord Display N/A N/A Yes Yes

III WebBridge
Integration

Yes Yes Yes Yes

86   I NFORMATION TECHNOLOGY AND LIBRARIES   |   June 2010

vastly increase the reach and visibility of their electronic
resources in the wider community.

References

1.	 Nicole Engard, ed., Library Mashups—Exploring New Ways
to Deliver Library Data (Medford, N.J.: Information Today, 2009);
Andrew Darby and Ron Gilmour, “Adding Delicious Data to
Your Library Website,” Information Technology & Libraries 28, no.
2 (2009): 100–103.

2.	 Monica Brown-Sica, “Playing Tag in the Dark: Diagnosing
Slowness in Library Response Time,” Information Technologies &
Libraries 27, no. 4 (2008): 29–32.

3.	 Dapper, “Dapper Dynamic Ads,” http://www.dapper	
.net/ (accessed June 19, 2009); Yahoo!, “Pipes,” http://pipes	
.yahoo.com/pipes/ (accessed June 19, 2009).

4.	 Jennifer Bowen, “Metadata to Support Next-Genera-
tion Library Resource Discovery: Lessons from the Extensible
Catalog, Phase 1,” Information Technology & Libraries 27, no.
2 (2008): 6–19; John Blyberg, “ILS Customer Bill-of-Rights,”
online posting, Blyberg.net, Nov. 20, 2005, http://www.blyberg	
.net/2005/11/20/ils-customer-bill-of-rights/ (accessed June 18,
2009).

5.	 Douglas Crockford, “The Application/JSON Media Type
for JavaScript Object Notation (JSON),” memo, The Inter-
net Society, July 2006, http://www.ietf.org/rfc/rfc4627.txt
(accessed Mar. 30, 2010).

6.	 Google, “Who’s Using the Book Search APIs?” http://
code.google.com/apis/books/casestudies/ (accessed June 16,
2009).

7.	 Innovative Interfaces, “Millennium ILS,” http://www.iii	
.com/products/millennium_ils.shtml (accessed June 19, 2009).

8.	 Joint Information Systems Committee, “TicTOCs Jour-
nal Tables of Contents Service,” http://www.tictocs.ac.uk/
(accessed June 18, 2009).

9.	 Mark Dahl, Kyle Banarjee, and Michael Spalti, Digital
Libraries: Integrating Content and Systems (Oxford, United King-
dom: Chandos, 2006).

10.	 John Ockerbloom et al., “DLF ILS Discovery Interface
Task Group (ILS-DI) Technical Recommendation,” (Dec. 8,
2008), http://diglib.org/architectures/ilsdi/DLF_ILS_
Discovery_1.1.pdf (accessed June 18, 2009).

11.	 International Organization for Standardization,
“Information and Documentation—Schema for Holdings
Information,” http://www.iso.org/iso/catalogue_detail	
.htm?csnumber=39735 (accessed June 18, 2009)

12.	 National Information Standards Organization, “ANSI/
NISO Z39.50—Information Retrieval: Application Service Defi-
nition and Protocol Specification,” (Bethesda, Md.: NISO Pr.,
2003), http://www.loc.gov/z3950/agency/Z39-50-2003.pdf
(accessed May 31, 2010).

13.	 Ross Singer and James Farrugia, “Unveiling Jangle:
Untangling Library Resources and Exposing Them through the
Atom Publishing Protocol,” The Code4Lib Journal no. 4 (Sept. 22,
2008), http://journal.code4lib.org/articles/109 (accessed Apr.
21, 2010); Roy Fielding, “Architectural Styles and the Design of
Network-Based Software Architectures” (PhD diss., University
of California, Irvine, 2000); J. C. Gregorio, ed., “The Atom Pub-
lishing Protocol,” memo, The Internet Engineering Task Force,
Oct. 2007, http://bitworking.org/projects/atom/rfc5023.html
(accessed June 18, 2009).

14.	 World Wide Web Consortium, “Cross-Origin Resource
Sharing: W3C Working Draft 17 March 2009,” http://www	
.w3.org/TR/access-control/ (accessed June 18, 2009).

15.	 OCLC Online Computer Library Center, “Worldcat and
Cataloging Documentation,” http://www.oclc.org/support/
documentation/worldcat/default.htm (accessed June 18, 2009).

16.	 F. Curbera et al., “Unraveling the Web Services Web: An
Introduction to SOAP, WSDL, and UDDI,” IEEE Internet Comput-
ing 6, no. 2 (2002): 86–93.

17.	 OCLC Online Computer Library Center, “OCLC Web
Services,” http://www.worldcat.org/devnet/wiki/Services
(accessed June 18, 2009); International Federation of Library Asso-
ciations and Institutions Study Group on the Functional Require-
ments for Bibliographic Records, “Functional Requirements for
Bibliographic Records : Final Report,” http://www.ifla.org/files/
cataloguing/frbr/frbr_2008.pdf (accessed Mar. 31, 2010).

18.	 Yahoo!, “The Yahoo! User Interface Library (YUI),”
http://developer.yahoo.com/yui/ (accessed June 18, 2009);
Dojo Foundation, “Dojo—The JavaScript Toolkit,” http://www	
.dojotoolkit.org/ (accessed June 18, 2009).

19.	 Google, “Gadgets.* API Developer’s Guide,” http://code.
google.com/apis/gadgets/docs/dev_guide.html (accessed
June 18, 2009).

20.	 Daniel Chudnov, “COinS for the Link Trail,” Library Jour-
nal 131 (2006): 8–10.

21.	 LibraryThing, “LibraryThing,” http://www.librarything	
.com/widget.php (accessed June 19, 2009).

22.	 Robert Wallis, “Juice—JavaScript User Interface Compo-
nentised Extensions,” http://code.google.com/p/juice-project/
(accessed June 18, 2009).

23.	 Jeffrey Wong and Jason Hong, “Making Mashups with
Marmite: Towards End-User Programming for the Web” Confer-
ence on Human Factors in Computing Systems, San Jose, California,
April 28–May 3, 2007: Conference Proceedings, Volume 2 (New
York: Association for Computing Machinery, 2007): 1435–44;
Guiling Wang, Shaohua Yang, and Yanbo Han, “Mashroom:
End-User Mashup Programming Using Nested Tables” (paper
presented at the International World Wide Web Conference,
Madrid, Spain, 2009): 861–70; Nan Zang, “Mashups for the
Web-Active User” (paper presented at the IEEE Symposium on
Visual Languages and Human-Centric Computing, Herrshing
am Ammersee, Germany, 2008): 276–77.

