
The Efficient Storage of Text Documents in Digital Libraries   |   SkibiŃski and Swacha    143

Przemysław Skibiński and
Jakub Swacha

The Efficient Storage of
Text Documents in Digital
Libraries

Przemysław Skibiński (inikep@ii.uni.wroc.pl) is [QY: title?],
Institute of Computer Science, University of Wrocław, Poland.
Jakub Swacha (jakubs@uoo.univ.szczecin.pl) is [QY: title?],
Institute of Information Technology in Management, University of
Szczecin, Poland.

Przemysław Skibiński and
Jakub Swacha

The Efficient Storage of
Text Documents in Digital
Libraries

In this paper we investigate the possibility of improv-
ing the efficiency of data compression, and thus reduc-
ing storage requirements, for seven widely used text
document formats. We propose an open-source text
compression software library, featuring an advanced
word-substitution scheme with static and semidynamic
word dictionaries. The empirical results show an average
storage space reduction as high as 78 percent compared to
uncompressed documents, and as high as 30 percent com-
pared to documents compressed with the free compression
software gzip.

It is hard to expect the continuing rapid growth of global
information volume not to affect digital libraries.1 The
growth of stored information volume means growth

in storage requirements, which poses a problem in both
technological and economic terms. Fortunately, the digi-
tal librarys’ hunger for resources can be tamed with data
compression.2

The primary motivation for our research was to limit
the data storage requirements of the student thesis elec-
tronic archive in the Institute of Information Technology
in Management at the University of Szczecin. The current
regulations state that every thesis should be submitted
in both printed and electronic form. The latter facilitates
automated processing of the documents for purposes
such as plagiarism detection or statistical language analy-
sis. Considering the introduction of the three-cycle higher
education system (bachelor/master/doctorate), there are
several hundred theses added to the archive every year.

Although students are asked to submit Microsoft
Word–compatible documents such as DOC, DOCX, and
RTF, other popular formats such as TeX script (TEX),
HTML, PS, and PDF are also accepted, both in the case
of the main thesis document, containing the thesis and
any appendixes that were included in the printed ver-
sion, and the additional appendixes, comprising mate-
rials that were left out of the printed version (such as
detailed data tables, the full source code of programs,
program manuals, etc.). Some of the appendixes may be
multimedia, in formats such as PNG, JPEG, or MPEG.3
Notice that this paper deals with text-document com-
pression only. Although the size of individual text
documents is often significantly smaller than the size
of individual multimedia objects, their collective vol-
ume is large enough to make the compression effort
worthwhile. The reason for focusing on text-document
compression is that most multimedia formats have
efficient compression schemes embedded, whereas text
document formats usually either are uncompressed or
use schemes with efficiency far worse than the current
state of the art in text compression.

Although the student thesis electronic archive was
our motivation, we propose a solution that can be applied
to any digital library containing text documents. As the
recent survey by Kahl and Williams revealed, 57.5 percent
of the examined 1,117 digital library projects consisted of
text content, so there are numerous libraries that could
benefit form implementation of the proposed scheme.4

In this paper, we describe a state-of-the-art approach
to text-document compression and present an open-
source software library implementing the scheme that
can be freely used in digital library projects.

In the case of text documents, improvement in com-
pression effectiveness may be obtained in two ways: with
or without regard to their format. The more nontextual
content in a document (e.g., formatting instructions,
structure description, or embedded images), the more it
requires format-specific processing to improve its com-
pression ratio. This is because most document formats
have their own ways of describing their formatting,
structure, and nontextual inclusions (plain text files have
no inclusions).

For this reason, we have developed a compound
scheme that consists of several subschemes that can be
turned on and off or run with different parameters. The
most suitable solution for a given document format can
be obtained by merely choosing the right schemes and
adequate parameter values. Experimentally, we have
found the optimal subscheme combinations for the fol-
lowing formats used in digital libraries: plain text, TEX,
RTF, text annotated with XML, HTML, as well as the
device-independent rendering formats PS and PDF.5

First we discuss related work in text compression,
then describe the basis of the proposed scheme and how
it should be adapted for particular document formats.
The section “Using the scheme in a digital library project”
discusses how to use the free software library that imple-
ments the scheme. Then we cover the results of experi-
ments involving the proposed scheme and a corpus of
test files in each of the tested formats.

n	 Text compression

There are two basic principles of general-purpose data
compression. The first one works on the level of char-
acter sequences, the second one works on the level of

Przemysław Skibiński (inikep@ii.uni.wroc.pl) is Associate
Professor, Institute of Computer Science, University of
Wrocław, Poland. Jakub Swacha (jakubs@uoo.univ.szczecin
.pl) is Associate Professor, Institute of Information Technology in
Management, University of Szczecin, Poland.

144   I NFORMATION TECHNOLOGY AND LIBRARIES   |  September 2009

individual characters. In the first case, the idea is to look
for matching character sequences in the past buffer of the
file being compressed and replace such sequences with
shorter code words; this principle underlies the algo-
rithms derived from the concepts of Arbraham Lempel
and Jacob Ziv (LZ-type).6

In the second case, the idea is to gather frequency
statistics for characters in the file being compressed and
then assign shorter code words for frequent characters
and longer ones for rare characters (this is exactly how
Huffman coding works—what arithmetic coding assigns
are value ranges rather than individual code words).7

As the characters form words, and words form
phrases, there is high correlation between subsequent
characters. To produce shorter code words, a compression
algorithm either has to observe the context (understood
as several preceding characters) in which the character
appeared and maintain separate frequency models for
different contexts, or has to first decorrelate the characters
(by sorting them according to their contexts) and then use
an adaptive frequency model when compressing the out-
put (as the characters’ dependence on context becomes
dependence on position). Whereas the former solution is
the foundation of Prediction by Partial Match (PPM) algo-
rithms, Burrows-Wheeler Transform (BWT) compression
algorithms are based on the latter.8

Witten et al., in their seminal work Managing Gigabytes,
emphasize the role of data compression in text storage
and retrieval systems, stating three requirements for the
compression process: good compression, fast decoding,
and feasibility of decoding individual documents with
minimum overhead.9 The choice of compression algorithm
should depend on what is more important for a specific
application: better compression or faster decoding.

An early work of Jon Louis Bentley and others showed
that a significant improvement in text compression can
be achieved by treating a text document as a stream of
space-delimited words rather than individual characters.10
This technique can be combined with any general-purpose
compression method in two ways: by redesigning charac-
ter-based algorithms as word-based ones or by implement-
ing a two-stage scheme whose first step is a transform
replacing words with dictionary indices and whose second
step is passing the transformed text through any general-
purpose compressor.11 From the designer’s point of view,
although the first approach provides more control over
how the text is modeled, the second approach is much eas-
ier to implement and upgrade to future general-purpose
compressors.12 Notice that the separation of the word-
replacement stage from the compression stage does not
imply that two distinct programs have to be used—if only
an appropriate general-purpose compression software
library is available, a single utility can use it to compress
the output of the transform it first performed.

An important element of every word-based scheme

is the dictionary of words that lists character sequences
that should be treated as single entities. The dictionary
can be dynamic (i.e., constructed on-line during the com-
pression of every document),13 static (i.e., constructed
off-line before the compression stage and once for every
document of a given class—typically, the language of the
document determines its class),14 or semidynamic (i.e.,
constructed off-line before compression stage but indi-
vidually for every document).15 Semidynamic dictionar-
ies must be stored along with the compressed document.
Dynamic dictionaries are reconstructed during decom-
pression (which makes the decoding slower than in the
other cases). When the static dictionary is used, it must
be distributed with the decoder; since a single dictionary
is used to compress multiple files, it usually attains the
best compression ratios, but it is only effective with docu-
ments of the class it was originally prepared for.

n	 The basic compression scheme

The basis of our approach is a word-based, lossless text
compression scheme, dubbed Compression for Textual
Digital Libraries (CTDL). The scheme consists of up to
four stages:

	 1.	 document decompression
	 2.	 dictionary composition
	 3.	 text transform
	 4.	 compression

Stages 1–2 are optional. The first is for retrieving tex-
tual content from files compressed poorly with general-
purpose methods. It is only executed for compressed
input documents. It uses an embedded decompressor
for files compressed using the Deflate algorithm,16 but
an external tool—Precomp—is used to decode natively
compressed PDF documents.17

The second stage is for constructing the dictionary
of the most frequent words in the processed document.
Doing so is a good idea when the compressed documents
have no common set of words. If there are many docu-
ments in the same language, a common dictionary fares
better—it usually does not pay off to store an individual
dictionary with each file because they all contain similar
lists of words. For this reason we have developed two
variants of the scheme. The basic CTDL includes stage
2; therefore it can use a document-specific semidynamic
dictionary in the third stage. The CTDL+ variant uses
a static dictionary common for all files in the same lan-
guage; therefore it can omit stage 2.

During stage 2, all the potential dictionary items
that meet the word requirements are extracted from the
document and then sorted according to their frequency

The Efficient Storage of Text Documents in Digital Libraries   |   Skibiński and Swacha    145

to form a dictionary. The requirements define the mini-
mum length and frequency of a word in the document
(by default, 2 and 6 respectively) as well as its content.
Only the following kinds of strings are accepted into the
dictionary:

	 n	 a sequence of lowercase and uppercase letters
(“a”–“z”, “A”–“Z”) and characters with ASCII
code values from range 128–255 (thus it supports
any typical 8-bit text encoding and also UTF-8)

	 n	 URL address prefixes of the form “http://
domain/,” where domain is any combination of
letters, digits, dots, and dashes

	 n	 e-mails—patterns of the form “login@domain,”
where login and domain are any combination of
letters, digits, dots, and dashes

	 n	 runs of spaces

Stage 3 begins with parsing the text into tokens. The
tokens are defined by their content; as four types of
content are distinguished, there are also four classes of
tokens: words, numbers, special tokens, and characters.
Every token is then encoded in a way that depends on the
class it belongs to.

The words are those character sequences that are listed
in the dictionary. Every word is replaced with its diction-
ary index, which is then encoded using symbols that are
rare or nonexistent in the input document. Indexes are
encoded with code words that are between one and four
bytes long, with lower indexes (denoting more frequent
words) being assigned shorter code words.

The numbers are sequences of decimal digits, which
are encoded with a dense binary code, and, similarly to
letters, placed in a separate location in the output file.

The special tokens can be decimal fractions, IP numeri-
cal addresses, dates, times, and numerical ranges. As they
have a strict format and differ only in numerical values,
they are encoded as sequences of numbers.18

Finally, the characters are the tokens that do not
belong to any of the aforementioned group. They are sim-
ply copied to the output file, with the exception of those
rare characters that were used to construct code words;
they are copied as well, but have to be preceded with a
special escape symbol.

The specialized transform variants (see the next sec-
tion) distinguish three additional classes from the charac-
ter class: letters (words not in the dictionary), single white
spaces, and multiple white spaces.

Stage 4 could use any general-purpose compression
method to encode the output of stage 3. For this role,
we have investigated several open-licensed, general-
purpose compression algorithms that differ in speed and
efficiency. As we believe that document access speed is
important to textual digital libraries, we have decided to
focus on LZ–type algorithms because they offer the best

decompression times. CTDL has two embedded back-
end compressors: the standard Deflate and LZMA, well-
known for its ability to attain high compression ratios.19

n	 Adapting the transform for
individual text document formats

The text document formats have individual character-
istics; therefore the compression ratio can be improved
by adapting the transform for a particular format. As
we noted in the introduction, we propose a set of sub-
schemes (modifications of the original processing steps or
additional processing steps) that can help compression—
provided the issue that a given subscheme addresses is
valid for the document format being compressed. There
are two groups of subschemes: the first consists of solu-
tions that can be applied to more than one document
format. It includes

	 n	 changing the minimum word frequency threshold
(the “MinFr” column in table 1) that a word must
pass to be included in the semidynamic dictionary
(notice that no word can be added to a static dic-
tionary);

	 n	 using spaceless word model (“WdSpc” column in
table 1) in which a single space between two words
is not encoded at all; instead, a flag is used to mark
two neighboring words that are not separated by a
space;

	 n	 run-length encoding of multiple spaces (“SpRuns”
column in table 1);

	 n	 letter containers (“LetCnt” column in table 1), that
is, removing sequences of letters (belonging to
words that are not included in the dictionary) to a
separate location in the output file (and leaving a
flag at their original position).

Table 1 shows the assignment of the mentioned sub-
schemes to document formats, with “+” denoting that
a given subscheme should be applied when processing
a given document format. Notice that we use different
subschemes for the same format depending on whether
a semidynamic (CTDL) or static (CTDL+) dictionary is
used.

The remaining subschemes are applied for only one
document format. They attain an improvement in com-
pression performance by changing the definition of
acceptable dictionary words, and, in one case (PS), by
changing the definition of number strings.

The encoder for the simplest of the examined for-
mats—plain text files—performs no additional format-
specific processing.

The first such modification is in the TEX encoder.
The difference is that words beginning with “\” (TEX

146   I NFORMATION TECHNOLOGY AND LIBRARIES   |  September 2009

instructions) are now accepted in
the dictionary.

The modification for PDF
documents is similar. In this case,
bracketed words (PDF entities)—
for example “(abc)”—are accept-
able as dictionary entries. Notice
that PDF files are internally
compressed by default—the
transform can be applied after
decompressing them into textual
format. The Precomp tool is used
for this purpose.

The subscheme for PS files
features two modifications: Its
dictionary accepts words begin-
ning with “/” and “\” or ending
with “(“, and its number tokens can contain not only deci-
mal but also hexadecimal digits (though a single number
must have at least one decimal digit). The hexadecimal
number must be at least 6 digits long, and is encoded
with a flag: a byte containing its length (numbers with
more than 261 digits are split into parts) and a sequence
of bytes, each containing two digits from the number (if
the number of digits is odd, the last byte contains only
one digit).

For RTF documents, the dictionary accepts the
“\”-preceded words, like the TEX files. Moreover, the
hexadecimal numbers are encoded in the same way as
in the PS subscheme so that RTF documents containing
images can be significantly reduced in size.

Specialization for XML is roughly the transform
described in our earlier article, “Revisiting Dictionary-
Based Compression.”20 It allows for XML start tags and
entities to be added to dictionary, and it replaces every
end tag respecting the XML well-formedness rule (i.e.,
closing the element opened most recently) with a single
flag. It also uses a single flag to denote XML attribute
value begin and end marks.

HTML documents are handled similarly. The only dif-
ference is that the tags that, according to the HTML 4.01
specification, are not expected to be followed by an end-
tag (BASE, LINK, XBASEHREF, BR, META, HR, IMG,
AREA, INPUT, EMBED, PARAM and COL) are ignored
by the mechanism replacing closing tags (so that it can
guess the correct closing tag even after the singular tags
were encountered).21

n	 Using the scheme in a digital library
project

Many textual digital libraries seriously lack text compres-
sion capabilities, and popular digital library systems,

such as Greenstone, have no embedded efficient text
compression.22 Therefore we have decided to develop
CTDL as an open-source software library. The library is
free to use and can be downloaded from www.ii.uni.wroc
.pl/~inikep/research/CTDL/CTDL09.zip.

The library does not require any additional nonstan-
dard libraries. It has both the text transform and back-end
compressors embedded. However, compressing PDF
documents requires them to be decompressed first with
the free Precomp tool.

The compression routines are wrapped in a code
selecting the best algorithm depending on the chosen
compression mode and the input document format. The
interface of the library consists of only two functions:
CTDL_encode and CTDL_decode, for, respectively, com-
pressing and decompressing documents.

CTDL_encode takes the following parameters:

	 n	 char* filename—name of the input (uncompressed)
document

	 n	 char* filename_out—name of the output (com-
pressed) document

	 n	 EFileType ftype—format of the input document,
defined as:

	 	 enum EFileType { HTML, PDF, PS, RTF, TEX, TXT,
XML};

	 n	 EDictionaryType dtype—dictionary type, defined
as:

	 	 enum EDictionaryType { Static, SemiDynamic };

CTDL_decode takes the following parameters:

	 n	 char* filename—name of the input (compressed)
document

	 n	 char* filename_out—name of the output (decom-
pressed) document

Table 1. Universal transform optimizations

CTDL Settings CTDL+ Settings

Format MinFr WdSpc SpRuns LetCnt WdSpc SpRuns LetCnt

HTML 3 + + + + + -

PDF 3 - - - - - -

PS 6 - + - - + -

RTF 3 + - + + - -

TEX 3 + + + + + +

TXT 6 + + + + + +

XML 3 + + + + + -

The Efficient Storage of Text Documents in Digital Libraries   |   Skibiński and Swacha    147

The library was written in
the C++ programming language,
but a compiled static library is
also distributed; thus it can be
used in any language that can
link such libraries. Currently, the
library is compatible with two
platforms: Microsoft Windows
and Linux.

To use static dictionaries, the
respective dictionary file must
be available. The library is sup-
plied with an English dictionary
trained on a 3 GB text corpus
from Project Gutenberg.23 Seven
other dictionaries—German,
Spanish, Finnish, French,
Italian, Polish, and Russian—
can be freely downloaded from
www.ii.uni.wroc.pl/~inikep/
research/dicts. There also is a tool that helps create a new
dictionary from any given corpus of documents, available
from Skibiński upon request via e-mail (inikep@ii.uni
.wroc.pl).

The library can be used to reduce the storage require-
ments or also to reduce the time of delivering a requested
document to the library user. In the first case, the decom-
pression must be done on the server side. In the second
case, it must be done on the client side, which is pos-
sible because stand-alone decompressors are available for
Microsoft Windows and Linux. Obviously, a library can
support both options by providing the user with a choice
whether a document should be delivered compressed or
not. If documents are to be decompressed client-side, the
basic CTDL, using a semidynamic dictionary, seems hand-
ier, since it does not require the user to obtain the static
dictionary that was used to compress the downloaded doc-
ument. Still, the size of such a dictionary is usually small,
so it does not disqualify CTDL+ from this kind of use.

n	 Experimental results

We tested CTDL experimentally on a benchmark set of
text documents. The purpose of the tests was to compare
the storage requirements of different document formats
in compressed and uncompressed form.

In selecting the test files we wanted to achieve the
following goals:

	 n	 test all the formats listed in table 1 (therefore we
decided to choose documents that produced no
errors during document format conversion)

	 n	 obtain verifiable results (therefore we decided to
use documents that can be easily obtained from the
Internet)

	 n	 measure the actual compression improvement
from applying the proposed scheme (apart from
the RTF format, the scheme is neutral to the images
embedded in documents; therefore we decided to
use documents that have no embedded images)

For these reasons, we used the following procedure
for selecting documents to the test set. First, we searched
the Project Gutenberg library for TEX documents, as this
format can most reliably be transformed into the other
formats. From the fifty-one retrieved documents, we
removed all those containing images as well as those that
the htlatex tool failed to convert to HTML. In the eleven
remaining documents, there were four Jane Austen books;
this overrepresentation was handled by removing three of
them. The resulting eight documents are given in table 2.

From the TEX files we generated HTML, PDF, and PS
documents. Then we used Word 2007 to transform HTML
documents into RTF, DOC, and XML (thus this is the
Microsoft Word XML format, not the Project Gutenberg
XML format). The TXT files were downloaded from
Project Gutenberg.

The tests were conducted on a low-end AMD Sempron
3000+ 1.80 GHz system with 512 MB RAM and a Seagate
80 GB ATA drive, running Windows XP SP2.

For comparison purposes, we used three general-
purpose compression programs:

	 n	 gzip implementing Deflate
	 n	 bzip2 implementing a BWT-based compression

algorithm

Table 2. Test set documents specification

File Name Title Author
TEX Size
(bytes)

13601-t
Expositions of Holy Scripture:
Romans Corinthians

Maclaren 1,443,056

16514-t
A Little Cook Book for a Little
Girl

Benton 220,480

1noam10t North America, V. 1 Trollope 804,813

2ws2610 Hamlet Shakespeare 194,527

alice30 Alice in Wonderland Carroll 165,844

cdscs10t Some Christmas Stories Dickens 127,684

grimm10t Fairy Tales Grimm 535,842

pandp12t Pride and Prejudice Austen 727,415

148   I NFORMATION TECHNOLOGY AND LIBRARIES   |  September 2009

	 n	 PPMVC implementing a PPM-derived compres-
sion algorithm24

Tables 3–10 show

	 n	 the bitrate attained on each test file by the Deflate-
based gzip in default mode, the proposed com-
pression scheme in the semidynamic and static
variants with Deflate as the back-end compression
algorithm, 7-zip in LZMA mode, the proposed
compression scheme in the semidynamic and static

variants with LZMA as the back-end compression
algorithm, bzip2 and PPMVC;

	 n	 the average bitrate attained on the whole test cor-
pus; and

	 n	 the total compression and decompression times (in
seconds) for the whole test corpus, measured on the
test platform (they are total elapsed times including
program initialization and disk operations).

Bitrates are given in output bits per character of an
uncompressed document in a given format, so a smaller

Table 3. Compression efficiency and times for the TXT documents

Deflate LZMA
bzip2 PPMVC

File Name gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 2.944 2.244 2.101 2.337 2.057 1.919 2.158 1.863

16514-t 2.566 2.150 1.969 2.228 1.993 1.838 2.010 1.780

1noam10t 2.967 2.337 2.109 2.432 2.151 1.958 2.160 1.946

2ws2610 3.217 2.874 2.459 2.871 2.659 2.312 2.565 2.343

alice30 2.906 2.533 2.184 2.585 2.360 2.056 2.341 2.090

cdscs10t 3.222 2.898 2.298 2.928 2.721 2.192 2.694 2.436

grimm10t 2.832 2.275 2.090 2.357 2.079 1.931 2.112 1.886

pandp12t 2.901 2.251 2.097 2.366 2.061 1.930 2.032 1.835

Average 2.944 2.445 2.163 2.513 2.260 2.017 2.259 2.022

Comp. Time 0.688 1.234 0.954 6.688 2.640 2.281 2.110 3.281

Dec. Time 0.125 0.454 0.546 0.343 0.610 0.656 0.703 3.453

Table 4. Compression efficiency and times for the TEX documents

 Deflate LZMA
bzip2 PPMVC

File Name gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 2.927 2.233 2.092 2.328 2.049 1.913 2.146 1.852

16514-t 2.277 1.904 1.794 1.957 1.744 1.645 1.746 1.534

1noam10t 2.976 2.370 2.142 2.445 2.186 1.986 2.195 1.976

2ws2610 3.206 2.906 2.482 2.864 2.674 2.323 2.562 2.340

alice30 2.897 2.526 2.183 2.573 2.350 2.048 2.332 2.085

cdscs10t 3.224 2.931 2.328 2.941 2.759 2.222 2.723 2.466

grimm10t 2.831 2.304 2.120 2.364 2.113 1.960 2.143 1.910

pandp12t 2.881 2.239 2.090 2.346 2.049 1.916 2.013 1.817

Average 2.902 2.427 2.154 2.477 2.241 2.002 2.233 1.998

Comp. Time 0.688 1.250 0.969 6.718 2.703 2.406 2.140 3.329

Dec. Time 0.109 0.453 0.547 0.360 0.609 0.672 0.703 3.485

The Efficient Storage of Text Documents in Digital Libraries   |   Skibiński and Swacha    149

bitrate (of, e.g., RTF documents compared to the plain
text) does not mean the file is smaller, only that the com-
pression was better. Uncompressed files have a bitrate of
8 bits per character.

Looking at the results obtained for TXT documents
(table 3), we can see an average improvement of 17
percent for CTDL and 27 percent for CTDL+ compared
to the baseline Deflate implementation. Compared to
the baseline LZMA implementation, the improvement
is 10 percent for CTDL and 20 percent for CTDL+. Also,
CTDL+ combined with LZMA compresses TXT docu-
ments 31 percent better than gzip, 11 percent better than
bzip2, and slightly better than the state-of-the-art PPMVC
implementation.

In case of TEX documents (table 4), the gzip results
were improved, on average, by 16 percent using CTDL
and by 26 percent using CTDL+; the numbers for LZMA
are 10 percent for CTDL and 19 percent for CTDL+. In a
cross-method comparison, CTDL+ with LZMA beats gzip
by 31 percent, bzip2 by 10 percent, and attains results
very close to PPMVC.

On average, Deflate-based CTDL compressed XML
documents 20 percent better than the baseline algorithm
(table 5), and with CTDL+ the improvement rises to 26
percent. CTDL improves LZMA compression by 11 per-
cent, and CTDL+ improves it by 18 percent. CTDL+ with
LZMA beats gzip by 33 percent, bzip2 by 8 percent, and
loses only 4 percent to PPMVC.

Similar results were obtained for HTML documents
(table 6): they were compressed with CTDL and Deflate
18 percent better than with the Deflate algorithm alone,
and 27 percent better with CTDL+. LZMA compression

efficiency is improved by 11 percent with CTDL and 20
percent with CTDL+. CTDL+ with LZMA beats gzip by
33 percent, bzip2 by 9 percent, and loses only 2 percent
to PPMVC.

For RTF documents (table 7), the gzip results were
improved, on average, by 18 percent using CTDL, and 25
percent using CTDL+; the numbers for LZMA are respec-
tively 9 percent for CTDL and 17 percent for CTDL+. In a
cross-method comparison, CTDL+ with LZMA beats gzip
by 34 percent, bzip2 by 7 percent, and loses 5 percent to
PPMVC.

Although there is no mode designed especially for
DOC documents in CTDL (table 8), the basic TXT mode
was used, as it was found experimentally to be the best
choice available. The results show it managed to improve
Deflate-based compression by 9 percent using CTDL,
and by 21 percent using CTDL+, whereas LZMA-based
compression was improved respectively by 4 percent for
CTDL and 14 percent for CTDL+. Combined with LZMA,
CTDL+ compresses DOC documents 30 percent better
than gzip, 13 percent better than bzip2, and 1 percent bet-
ter than PPMVC.

In case of PS documents (table 9), the gzip results
were improved, on average, by 5 percent using CTDL,
and by 8 percent using CTDL+; the numbers for LZMA
improved 3 percent for CTDL and 5 percent for CTDL+.
In a cross-method comparison, CTDL+ with LZMA beats
gzip by 8 percent, losing 5 percent to bzip2 and 7 percent
to PPMVC.

Finally, CTDL improved Deflate-based compression of
PDF documents (table 10) by 9 percent using CTDL and 10
percent using CTDL+ (compared to gzip; the numbers are

Table 5. Compression efficiency and times for the XML documents

 Deflate LZMA
bzip2 PPMVC

File Name gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 2.046 1.551 1.514 1.585 1.405 1.339 1.451 1.242

16514-t 0.871 0.698 0.670 0.703 0.612 0.590 0.599 0.552

1noam10t 2.383 1.870 1.736 1.914 1.711 1.575 1.724 1.515

2ws2610 0.691 0.539 0.497 0.561 0.474 0.440 0.461 0.422

alice30 1.477 1.258 1.140 1.248 1.131 1.034 1.116 0.999

cdscs10t 2.106 1.892 1.576 1.862 1.741 1.462 1.721 1.538

grimm10t 1.878 1.485 1.422 1.521 1.337 1.276 1.337 1.198

pandp12t 1.875 1.404 1.349 1.465 1.263 1.207 1.252 1.105

Average 1.666 1.337 1.238 1.357 1.209 1.115 1.208 1.071

Comp. Time 0.750 1.844 1.390 10.79 4.891 5.828 7.047 3.688

Dec. Time 0.141 0.672 0.750 0.421 0.859 0.953 1.140 3.907

150   I NFORMATION TECHNOLOGY AND LIBRARIES   |  September 2009

much higher if compared to the embedded PDF compres-
sion—see “native” column in table 10); the numbers for
LZMA are respectively 7 percent for CTDL and 10 percent
for CTDL+. Combined with LZMA, CTDL+ compresses
PDF documents 28 percent better than gzip, 4 percent bet-
ter than bzip2, and 5 percent worse than PPMVC.

The results presented in tables 3–10 show that CTDL
manages to improve compression efficiency of the gen-
eral-purpose algorithms it is based on. The scale of
improvement varies between document types, but for
most of them it is more than 20 percent for CTDL+ and 10
percent for CTDL. The smallest improvement is achieved
in case of PS (about 5 percent). Figure 1 shows the same

results in another perspective: the bars show how much
better compression ratios were obtained for the same
documents using different compression schemes com-
pared to gzip with default options (0 percent means no
improvement).

Compared to gzip, CTDL offers a significantly better
compression ratio at the expense of longer processing
time. The relative difference is especially high in case of
decompression. However, in absolute terms, even in the
worst case of PDF, the average delay between CTDL+
and gzip is below 180 ms for compression and 90 ms for
decompression per file. Taking into consideration the
low-end specification of the test computer, these results

Table 6. Compression efficiency and times for the HTML documents

Deflate LZMA bzip2 PPMVC
File Name gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 2.696 2.054 1.940 2.121 1.868 1.751 1.932 1.670

16514-t 1.726 1.405 1.310 1.436 1.258 1.180 1.257 1.113

1noam10t 2.768 2.159 1.972 2.244 1.979 1.815 1.973 1.785

2ws2610 2.084 1.747 1.504 1.743 1.525 1.344 1.499 1.303

alice30 2.451 2.124 1.829 2.128 1.929 1.701 1.888 1.684

cdscs10t 2.880 2.593 2.084 2.597 2.410 1.966 2.348 2.131

grimm10t 2.603 2.074 1.916 2.138 1.883 1.752 1.889 1.688

pandp12t 2.640 2.037 1.891 2.120 1.826 1.717 1.777 1.596

Average 2.481 2.024 1.806 2.066 1.835 1.653 1.820 1.621

Comp. Time 0.750 1.438 1.078 8.203 3.421 3.328 2.672 3.500

Dec. Time 0.140 0.515 0.594 0.359 0.688 0.750 0.812 3.672

Table 7. Compression efficiency and times for the RTF documents

Deflate LZMA bzip2 PPMVC
File Name gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 1.882 1.431 1.372 1.428 1.267 1.200 1.300 1.120

16514-t 0.834 0.701 0.696 0.662 0.601 0.591 0.568 0.529

1noam10t 2.244 1.774 1.637 1.765 1.594 1.462 1.601 1.404

2ws2610 0.784 0.630 0.581 0.629 0.545 0.500 0.520 0.485

alice30 1.382 1.196 1.065 1.134 1.046 0.948 0.995 0.922

cdscs10t 2.059 1.882 1.558 1.784 1.704 1.432 1.645 1.488

grimm10t 1.618 1.301 1.227 1.285 1.150 1.082 1.149 1.010

pandp12t 1.742 1.340 1.264 1.336 1.169 1.115 1.142 1.012

Average 1.568 1.282 1.175 1.253 1.135 1.041 1.115 0.996

Comp. Time 0.766 2.047 1.500 12.62 6.500 7.562 8.032 3.922

Dec. Time 0.156 0.688 0.766 0.469 0.875 0.953 1.312 4.157

The Efficient Storage of Text Documents in Digital Libraries   |   Skibiński and Swacha    151

certainly seem good enough for practical applications.
Compared to LZMA, CTDL offers better compression

and a shorter compression time at the expense of longer
decompression time. Notice that the absolute gain in
compression time is several times the loss in decompres-
sion time, and the decompression time remains short,
noticeably shorter than bzip2’s and several times shorter
than PPMVC’s. CTDL+ beats bzip2 (with the sole excep-
tion of PS documents) in terms of compression ratio and
achieves results that are mostly very close to the resource-
hungry PPMVC.

n	 Conclusions

In this paper we addressed the problem of compressing
text documents. Although individual text documents
rarely exceed several megabytes in size, their entire col-
lections can have very large storage space requirements.

Although text documents are often compressed with
general-purpose methods such as Deflate, much better
compression can be obtained with a scheme specialized
for text, and even better if the scheme is additionally
specialized for individual document formats. We have
developed such a scheme (CTDL), beginning with a
text transform designed earlier for XML documents and

Table 8. Compression efficiency and times for the DOC documents

Deflate LZMA bzip2 PPMVC
File Name gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 2.798 2.183 2.062 2.181 1.976 1.854 2.115 1.818

16514-t 2.226 2.213 2.073 1.712 1.712 1.652 1.919 1.686

1noam10t 2.851 2.250 2.025 2.289 2.057 1.869 2.113 1.870

2ws2610 2.497 2.499 2.210 2.095 2.095 1.890 2.251 1.999

alice30 2.744 2.714 2.270 2.345 2.345 2.038 2.348 2.058

cdscs10t 2.916 2.891 2.231 2.559 2.560 2.062 2.475 2.196

grimm10t 2.691 2.677 2.059 2.179 2.179 1.856 2.075 1.833

pandp12t 2.761 2.171 2.050 2.189 1.955 1.843 1.983 1.770

Average 2.686 2.450 2.123 2.194 2.110 1.883 2.160 1.904

Comp. Time 0.718 1.312 1.031 7.078 4.063 3.001 2.250 3.421

Dec. Time 0.125 0.375 0.547 0.344 0.547 0.718 0.735 3.625

Table 9. Compression efficiency and times for the PS documents

Deflate LZMA bzip2 PPMVC
File Name gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 2.847 2.634 2.589 2.213 2.105 2.074 2.011 1.778

16514-t 3.226 3.129 3.039 2.730 2.707 2.699 2.613 2.505

1noam10t 2.718 2.551 2.490 2.147 2.060 2.015 1.892 1.694

2ws2610 3.064 2.922 2.795 2.600 2.521 2.450 2.336 2.186

alice30 3.224 3.154 3.026 2.750 2.745 2.691 2.553 2.400

cdscs10t 3.110 3.029 2.890 2.657 2.683 2.579 2.447 2.276

grimm10t 2.833 2.664 2.597 2.288 2.200 2.162 2.074 1.863

pandp12t 2.814 2.533 2.468 2.193 2.049 1.998 1.858 1.644

Average 2.980 2.827 2.737 2.447 2.384 2.334 2.223 2.043

Comp. Time 1.328 3.015 2.500 14.23 10.96 11.09 4.171 5.765

Dec. Time 0.203 0.688 0.781 0.609 1.063 1.125 1.360 6.063

152   I NFORMATION TECHNOLOGY AND LIBRARIES   |  September 2009

modifying it for the requirements
of each of the investigated docu-
ment formats. It has two operation
modes: basic CTDL and CTDL+
(the latter uses a common word
dictionary for improved compres-
sion) and uses two back-end com-
pression algorithms: Deflate and
LZMA (differing in compression
speed and efficiency).

The improvement in com-
pression efficiency, which can
be observed in the experimental
results, amounts to a significant
reduction of data storage require-
ments, giving the reasons to use
the library in both new and exist-
ing digital library projects instead
of general-purpose compression
programs. To facilitate this pro-
cess, we implemented the scheme
as an open-source software library
under the same name, freely avail-
able at http://www.ii.uni.wroc
.pl/~inikep/research/CTDL/
CTDL09.zip.

Although the scheme and the
library are now complete, we plan
future extensions aiming both to
increase the level of specializa-
tions for currently handled docu-
ment formats and to extend the
list of handled document formats.

Table 10. Compression efficiency and times for the (uncompressed) PDF documents

Deflate LZMA
bzip2 PPMVC

File Name native gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 3.443 2.624 2.191 2.200 1.986 1.708 1.656 1.852 1.659

16514-t 4.370 2.839 2.836 2.810 2.422 2.422 2.328 2.378 2.241

1noam10t 3.379 2.522 2.103 2.094 1.924 1.659 1.603 1.770 1.587

2ws2610 3.519 2.204 2.346 2.248 1.781 1.947 1.860 1.625 1.480

alice30 3.886 2.863 2.753 2.668 2.429 2.308 2.216 2.315 2.137

cdscs10t 3.684 2.835 2.688 2.557 2.399 2.276 2.164 2.260 2.079

grimm10t 3.543 2.557 2.135 2.120 2.008 1.713 1.661 1.858 1.696

pandp12t 3.552 2.684 2.267 2.256 2.071 1.831 1.769 1.870 1.705

Average 3.672 2.641 2.415 2.369 2.128 1.983 1.907 1.991 1.823

Comp. Time n/a 1.594 3.672 3.250 19.62 13.31 16.32 5.641 7.375

Dec. Time n/a 0.219 0.844 0.969 0.719 1.219 1.360 1.765 7.859

Figure 1. Compression improvement relative to gzip

The Efficient Storage of Text Documents in Digital Libraries   |   Skibiński and Swacha    153

Acknowledgements

Szymon Grabowski is the coauthor of the XML-WRT
transform, which served as the basis for the CTDL
library.

References

	 1.	 John F. Gantz et al., The Diverse and Exploding Digital
Universe: An Updated Forecast of Worldwide Information Growth
Through 2011 (Framingham, Mass.: IDC, 2008), http://www
.emc.com/collateral/analyst-reports/diverse-exploding-digital
-universe.pdf (accessed May 7, 2009).

	 2.	 Timothy C. Bell, Alistair Moffat, and Ian H. Witten, “Com-
pressing the Digital Library,” in Proceedings of Digital Libraries ‘94
(College Station: Texas A&M Univ. 1994): 41.

	 3.	 Ian H. Witten and David Bainbridge, How to Build a Digital
Library (San Francisco: Morgan Kaufmann, 2002).

	 4.	 Chad M. Kahl and Sarah C. Williams, “Accessing Digital
Libraries: A Study of ARL Members’ Digital Projects,” The Jour-
nal of Academic Librarianship 32, no. 4 (2006): 364.

	 5.	 Donald E. Knuth, TeX: The Program (Reading, Mass.:
Addison-Wesley, 1986); Microsoft Technical Support, Rich Text For-
mat (RTF) Version 1.5 Specification, 1997, http://www.biblioscape
.com/rtf15_spec.htm (accessed May 7, 2009);	 Tim Bray et al.,
eds., Extensible Markup Language (XML) 1.0 (Fourth Edition), 2006,
http://www.w3.org/TR/2006/REC-xml-20060816 (accessed
May 7, 2009); Dave Raggett, Arnaud Le Hors, and Ian Jacobs,
eds., W3C HTML 4.01 Specification, 1999, http://www.w3.org/
TR/REC-html40/ (accessed May 7, 2009); PostScript Language
Reference, 3rd ed. (Reading, Mass.: Addison-Wesley, 1999),
http://www.adobe.com/devnet/postscript/pdfs/PLRM.pdf
(accessed May 7, 2009); PDF Reference, 6th ed., version 1.7,
2006, http://www.adobe.com/devnet/acrobat/pdfs/pdf_
reference_1-7.pdf (accessed May 7, 2009).

	 6.	 Jacob Ziv and Abraham Lempel, “A Universal Algorithm
for Sequential Data Compression,” IEEE Transactions on Informa-
tion Theory 23, no. 3 (1977): 337.

	 7.	 Ian H. Witten, Alistair Moffat, and Timothy C. Bell, Man-
aging Gigabytes: Compressing and Indexing Documents and Images,
2nd ed. (San Francisco: Morgan Kaufmann, 1999).

	 8.	 John G. Cleary and Ian H. Witten, “Data Compression
using Adaptive Coding and Partial String Matching,” IEEE
Transactions on Communication 32, no. 4, (1984): 396; Michael
Burrows and David J. Wheeler, “A Block-Sorting Lossless
Data Compression Algorithm,” Digital Equipment Corporation
SRC Research Report 124, 1994, www.hpl.hp.com/techreports/
Compaq-DEC/SRC-RR-124.pdf (accessed May 7, 2009).

	 9.	 Witten, Moffat, and Bell, Managing Gigabytes.

	10.	 Jon Louis Bentley et al., “A Locally Adaptive Data Com-
pression Scheme,” Communications of the ACM 29, no. 4 (1986):
320; R. Nigel Horspool and Gordon V. Cormack, “Constructing
Word-Based Text Compression Algorithms,” Proceedings of the
Data Compression Conference (Snowbird, Utah, 1992): 62.

	11.	 See for example Andrei V. Kadach, “Text and Hypertext
Compression,” Programming & Computer Software 23, no. 4
(1997): 212; Alistair Moffat, “Word-based text compression,”
Software—Practice & Experience 2, no. 19 (1989): 185; 	
Przemysław Skibiński, Szymon Grabowski, and Sebastian Deo-
rowicz, “Revisiting Dictionary-Based Compression,” Software—
Practice & Experience 35, no. 15 (2005): 1455.

	12.	 Przemysław Skibiński, Jakub Swacha, and Szymon
Grabowski, “A Highly Efficient XML Compression Scheme for
the Web,” Proceedings of the 34th International Conference on Cur-
rent Trends in Theory and Practice of Computer Science, LNCS 4910
(2008): 766.

13.	 Jon Louis Bentley et al., “A Locally Adaptive Data Com-
pression Scheme,” Communications of the ACM 29, no. 4 (1986):
320.

14.	 Skibiński, Grabowski, and Deorowicz, “Revisiting Dic-
tionary-Based Compression,” 1455.

15.	 Skibiński, Swacha, and Grabowski, “A Highly Efficient
XML Compression Scheme for the Web,” 766.

	16.	 Peter Deutsch, “DEFLATE Compressed Data Format
Specification version 1.3,” RFC1951, Network Working Group,
1996, www.ietf.org/rfc/rfc1951.txt (accessed May 7, 2009).

17.	 Christian Schneider, Precomp—A Command Line Precom-
pressor, 2009, http://schnaader.info/precomp.html (accessed
May 7, 2009).

	18.	 The technical details of the algorithm constructing code
words and assigning them to indexes, and encoding num-
bers and special tokens, are given in Skibiński, Swacha, and
Grabowski, “A Highly Efficient XML Compression Scheme for
the Web,” 766.

	19.	 David Solomon, Data Compression: The Complete Reference,
4th ed. (London: Springer-Verlag, 2006).

	20.	 Skibiński, Swacha, and Grabowski, “A Highly Efficient
XML Compression Scheme for the Web,” 766.

	21.	 Dave Raggett, Arnaud Le Hors, and Ian Jacobs, eds., W3C
HTML 4.01 Specification, 1999, http://www.w3.org/TR/REC
-html40/ (accessed May 7, 2009).

22.	 Ian H. Witten, David Bainbridge, and Stefan Boddie,
“Greenstone: Open Source DL Software,” Communications of the
ACM 44, no. 5 (2001): 47.

23.	 Project Gutenberg, 2008, http://www.gutenberg.org/
(accessed May 7, 2009).

24.	 Przemysław Skibiński and Szymon Grabowski, “Variable-
Length Contexts for PPM,” Proceedings of the IEEE Data Compres-
sion Conference (Snowbird, Utah, 2004): 409.

ALCTS� cover 2
LITA� cover 3, cover 4

Index to Advertisers

