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In this paper we investigate the possibility of improv-
ing the efficiency of data compression, and thus reduc-
ing storage requirements, for seven widely used text 
document formats. We propose an open-source text 
compression software library, featuring an advanced 
word-substitution scheme with static and semidynamic 
word dictionaries. The empirical results show an average 
storage space reduction as high as 78 percent compared to 
uncompressed documents, and as high as 30 percent com-
pared to documents compressed with the free compression 
software gzip.

It is hard to expect the continuing rapid growth of global 
information volume not to affect digital libraries.1 The 
growth of stored information volume means growth 

in storage requirements, which poses a problem in both 
technological and economic terms. Fortunately, the digi-
tal librarys’ hunger for resources can be tamed with data 
compression.2 

The primary motivation for our research was to limit 
the data storage requirements of the student thesis elec-
tronic archive in the Institute of Information Technology 
in Management at the University of Szczecin. The current 
regulations state that every thesis should be submitted 
in both printed and electronic form. The latter facilitates 
automated processing of the documents for purposes 
such as plagiarism detection or statistical language analy-
sis. Considering the introduction of the three-cycle higher 
education system (bachelor/master/doctorate), there are 
several hundred theses added to the archive every year.

Although students are asked to submit Microsoft 
Word–compatible documents such as DOC, DOCX, and 
RTF, other popular formats such as TeX script (TEX), 
HTML, PS, and PDF are also accepted, both in the case 
of the main thesis document, containing the thesis and 
any appendixes that were included in the printed ver-
sion, and the additional appendixes, comprising mate-
rials that were left out of the printed version (such as 
detailed data tables, the full source code of programs, 
program manuals, etc.). Some of the appendixes may be 
multimedia, in formats such as PNG, JPEG, or MPEG.3 
Notice that this paper deals with text-document com-
pression only. Although the size of individual text 
documents is often significantly smaller than the size 
of individual multimedia objects, their collective vol-
ume is large enough to make the compression effort 
worthwhile. The reason for focusing on text-document 
compression is that most multimedia formats have 
efficient compression schemes embedded, whereas text 
document formats usually either are uncompressed or 
use schemes with efficiency far worse than the current 
state of the art in text compression.

Although the student thesis electronic archive was 
our motivation, we propose a solution that can be applied 
to any digital library containing text documents. As the 
recent survey by Kahl and Williams revealed, 57.5 percent 
of the examined 1,117 digital library projects consisted of 
text content, so there are numerous libraries that could 
benefit form implementation of the proposed scheme.4

In this paper, we describe a state-of-the-art approach 
to text-document compression and present an open-
source software library implementing the scheme that 
can be freely used in digital library projects.

In the case of text documents, improvement in com-
pression effectiveness may be obtained in two ways: with 
or without regard to their format. The more nontextual 
content in a document (e.g., formatting instructions, 
structure description, or embedded images), the more it 
requires format-specific processing to improve its com-
pression ratio. This is because most document formats 
have their own ways of describing their formatting, 
structure, and nontextual inclusions (plain text files have 
no inclusions).

For this reason, we have developed a compound 
scheme that consists of several subschemes that can be 
turned on and off or run with different parameters. The 
most suitable solution for a given document format can 
be obtained by merely choosing the right schemes and 
adequate parameter values. Experimentally, we have 
found the optimal subscheme combinations for the fol-
lowing formats used in digital libraries: plain text, TEX, 
RTF, text annotated with XML, HTML, as well as the 
device-independent rendering formats PS and PDF.5

First we discuss related work in text compression, 
then describe the basis of the proposed scheme and how 
it should be adapted for particular document formats. 
The section “Using the scheme in a digital library project” 
discusses how to use the free software library that imple-
ments the scheme. Then we cover the results of experi-
ments involving the proposed scheme and a corpus of 
test files in each of the tested formats.

n	 Text compression

There are two basic principles of general-purpose data 
compression. The first one works on the level of char-
acter sequences, the second one works on the level of 
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individual characters. In the first case, the idea is to look 
for matching character sequences in the past buffer of the 
file being compressed and replace such sequences with 
shorter code words; this principle underlies the algo-
rithms derived from the concepts of Arbraham Lempel 
and Jacob Ziv (LZ-type).6

In the second case, the idea is to gather frequency 
statistics for characters in the file being compressed and 
then assign shorter code words for frequent characters 
and longer ones for rare characters (this is exactly how 
Huffman coding works—what arithmetic coding assigns 
are value ranges rather than individual code words).7

As the characters form words, and words form 
phrases, there is high correlation between subsequent 
characters. To produce shorter code words, a compression 
algorithm either has to observe the context (understood 
as several preceding characters) in which the character 
appeared and maintain separate frequency models for 
different contexts, or has to first decorrelate the characters 
(by sorting them according to their contexts) and then use 
an adaptive frequency model when compressing the out-
put (as the characters’ dependence on context becomes 
dependence on position). Whereas the former solution is 
the foundation of Prediction by Partial Match (PPM) algo-
rithms, Burrows-Wheeler Transform (BWT) compression 
algorithms are based on the latter.8

Witten et al., in their seminal work Managing Gigabytes, 
emphasize the role of data compression in text storage 
and retrieval systems, stating three requirements for the 
compression process: good compression, fast decoding, 
and feasibility of decoding individual documents with 
minimum overhead.9 The choice of compression algorithm 
should depend on what is more important for a specific 
application: better compression or faster decoding.

An early work of Jon Louis Bentley and others showed 
that a significant improvement in text compression can 
be achieved by treating a text document as a stream of 
space-delimited words rather than individual characters.10 
This technique can be combined with any general-purpose 
compression method in two ways: by redesigning charac-
ter-based algorithms as word-based ones or by implement-
ing a two-stage scheme whose first step is a transform 
replacing words with dictionary indices and whose second 
step is passing the transformed text through any general-
purpose compressor.11 From the designer’s point of view, 
although the first approach provides more control over 
how the text is modeled, the second approach is much eas-
ier to implement and upgrade to future general-purpose 
compressors.12 Notice that the separation of the word-
replacement stage from the compression stage does not 
imply that two distinct programs have to be used—if only 
an appropriate general-purpose compression software 
library is available, a single utility can use it to compress 
the output of the transform it first performed.

An important element of every word-based scheme 

is the dictionary of words that lists character sequences 
that should be treated as single entities. The dictionary 
can be dynamic (i.e., constructed on-line during the com-
pression of every document),13 static (i.e., constructed 
off-line before the compression stage and once for every 
document of a given class—typically, the language of the 
document determines its class),14 or semidynamic (i.e., 
constructed off-line before compression stage but indi-
vidually for every document).15 Semidynamic dictionar-
ies must be stored along with the compressed document. 
Dynamic dictionaries are reconstructed during decom-
pression (which makes the decoding slower than in the 
other cases). When the static dictionary is used, it must 
be distributed with the decoder; since a single dictionary 
is used to compress multiple files, it usually attains the 
best compression ratios, but it is only effective with docu-
ments of the class it was originally prepared for.

n	 The basic compression scheme

The basis of our approach is a word-based, lossless text 
compression scheme, dubbed Compression for Textual 
Digital Libraries (CTDL). The scheme consists of up to 
four stages:

	 1.	 document decompression
	 2.	 dictionary composition
	 3.	 text transform
	 4.	 compression

Stages 1–2 are optional. The first is for retrieving tex-
tual content from files compressed poorly with general-
purpose methods. It is only executed for compressed 
input documents. It uses an embedded decompressor 
for files compressed using the Deflate algorithm,16 but 
an external tool—Precomp—is used to decode natively 
compressed PDF documents.17 

The second stage is for constructing the dictionary 
of the most frequent words in the processed document. 
Doing so is a good idea when the compressed documents 
have no common set of words. If there are many docu-
ments in the same language, a common dictionary fares 
better—it usually does not pay off to store an individual 
dictionary with each file because they all contain similar 
lists of words. For this reason we have developed two 
variants of the scheme. The basic CTDL includes stage 
2; therefore it can use a document-specific semidynamic 
dictionary in the third stage. The CTDL+ variant uses 
a static dictionary common for all files in the same lan-
guage; therefore it can omit stage 2.

During stage 2, all the potential dictionary items 
that meet the word requirements are extracted from the 
document and then sorted according to their frequency 
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to form a dictionary. The requirements define the mini-
mum length and frequency of a word in the document 
(by default, 2 and 6 respectively) as well as its content. 
Only the following kinds of strings are accepted into the 
dictionary:

	 n	 a sequence of lowercase and uppercase letters 
(“a”–“z”, “A”–“Z”) and characters with ASCII 
code values from range 128–255 (thus it supports 
any typical 8-bit text encoding and also UTF-8)

	 n	 URL address prefixes of the form “http://
domain/,” where domain is any combination of 
letters, digits, dots, and dashes

	 n	 e-mails—patterns of the form “login@domain,” 
where login and domain are any combination of 
letters, digits, dots, and dashes

	 n	 runs of spaces

Stage 3 begins with parsing the text into tokens. The 
tokens are defined by their content; as four types of 
content are distinguished, there are also four classes of 
tokens: words, numbers, special tokens, and characters. 
Every token is then encoded in a way that depends on the 
class it belongs to. 

The words are those character sequences that are listed 
in the dictionary. Every word is replaced with its diction-
ary index, which is then encoded using symbols that are 
rare or nonexistent in the input document. Indexes are 
encoded with code words that are between one and four 
bytes long, with lower indexes (denoting more frequent 
words) being assigned shorter code words. 

The numbers are sequences of decimal digits, which 
are encoded with a dense binary code, and, similarly to 
letters, placed in a separate location in the output file. 

The special tokens can be decimal fractions, IP numeri-
cal addresses, dates, times, and numerical ranges. As they 
have a strict format and differ only in numerical values, 
they are encoded as sequences of numbers.18

Finally, the characters are the tokens that do not 
belong to any of the aforementioned group. They are sim-
ply copied to the output file, with the exception of those 
rare characters that were used to construct code words; 
they are copied as well, but have to be preceded with a 
special escape symbol. 

The specialized transform variants (see the next sec-
tion) distinguish three additional classes from the charac-
ter class: letters (words not in the dictionary), single white 
spaces, and multiple white spaces.

Stage 4 could use any general-purpose compression 
method to encode the output of stage 3. For this role, 
we have investigated several open-licensed, general-
purpose compression algorithms that differ in speed and 
efficiency. As we believe that document access speed is 
important to textual digital libraries, we have decided to 
focus on LZ–type algorithms because they offer the best 

decompression times. CTDL has two embedded back-
end compressors: the standard Deflate and LZMA, well-
known for its ability to attain high compression ratios.19

n	 Adapting the transform for 
individual text document formats

The text document formats have individual character-
istics; therefore the compression ratio can be improved 
by adapting the transform for a particular format. As 
we noted in the introduction, we propose a set of sub-
schemes (modifications of the original processing steps or 
additional processing steps) that can help compression—
provided the issue that a given subscheme addresses is 
valid for the document format being compressed. There 
are two groups of subschemes: the first consists of solu-
tions that can be applied to more than one document 
format. It includes

	 n	 changing the minimum word frequency threshold 
(the “MinFr” column in table 1) that a word must 
pass to be included in the semidynamic dictionary 
(notice that no word can be added to a static dic-
tionary);

	 n	 using spaceless word model (“WdSpc” column in 
table 1) in which a single space between two words 
is not encoded at all; instead, a flag is used to mark 
two neighboring words that are not separated by a 
space;

	 n	 run-length encoding of multiple spaces (“SpRuns” 
column in table 1);

	 n	 letter containers (“LetCnt” column in table 1), that 
is, removing sequences of letters (belonging to 
words that are not included in the dictionary) to a 
separate location in the output file (and leaving a 
flag at their original position).

Table 1 shows the assignment of the mentioned sub-
schemes to document formats, with “+” denoting that 
a given subscheme should be applied when processing 
a given document format. Notice that we use different 
subschemes for the same format depending on whether 
a semidynamic (CTDL) or static (CTDL+) dictionary is 
used.

The remaining subschemes are applied for only one 
document format. They attain an improvement in com-
pression performance by changing the definition of 
acceptable dictionary words, and, in one case (PS), by 
changing the definition of number strings.

The encoder for the simplest of the examined for-
mats—plain text files—performs no additional format-
specific processing. 

The first such modification is in the TEX encoder. 
The difference is that words beginning with “\” (TEX 
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instructions) are now accepted in 
the dictionary.

The modification for PDF 
documents is similar. In this case, 
bracketed words (PDF entities)—
for example “(abc)”—are accept-
able as dictionary entries. Notice 
that PDF files are internally 
compressed by default—the 
transform can be applied after 
decompressing them into textual 
format. The Precomp tool is used 
for this purpose.

The subscheme for PS files 
features two modifications: Its 
dictionary accepts words begin-
ning with “/” and “\” or ending 
with “(“, and its number tokens can contain not only deci-
mal but also hexadecimal digits (though a single number 
must have at least one decimal digit). The hexadecimal 
number must be at least 6 digits long, and is encoded 
with a flag: a byte containing its length (numbers with 
more than 261 digits are split into parts) and a sequence 
of bytes, each containing two digits from the number (if 
the number of digits is odd, the last byte contains only 
one digit).

For RTF documents, the dictionary accepts the 
“\”-preceded words, like the TEX files. Moreover, the 
hexadecimal numbers are encoded in the same way as 
in the PS subscheme so that RTF documents containing 
images can be significantly reduced in size.

Specialization for XML is roughly the transform 
described in our earlier article, “Revisiting Dictionary-
Based Compression.”20 It allows for XML start tags and 
entities to be added to dictionary, and it replaces every 
end tag respecting the XML well-formedness rule (i.e., 
closing the element opened most recently) with a single 
flag. It also uses a single flag to denote XML attribute 
value begin and end marks.

HTML documents are handled similarly. The only dif-
ference is that the tags that, according to the HTML 4.01 
specification, are not expected to be followed by an end-
tag (BASE, LINK, XBASEHREF, BR, META, HR, IMG, 
AREA, INPUT, EMBED, PARAM and COL) are ignored 
by the mechanism replacing closing tags (so that it can 
guess the correct closing tag even after the singular tags 
were encountered).21

n	 Using the scheme in a digital library 
project

Many textual digital libraries seriously lack text compres-
sion capabilities, and popular digital library systems, 

such as Greenstone, have no embedded efficient text 
compression.22 Therefore we have decided to develop 
CTDL as an open-source software library. The library is 
free to use and can be downloaded from www.ii.uni.wroc 
.pl/~inikep/research/CTDL/CTDL09.zip.

The library does not require any additional nonstan-
dard libraries. It has both the text transform and back-end 
compressors embedded. However, compressing PDF 
documents requires them to be decompressed first with 
the free Precomp tool.

The compression routines are wrapped in a code 
selecting the best algorithm depending on the chosen 
compression mode and the input document format. The 
interface of the library consists of only two functions: 
CTDL_encode and CTDL_decode, for, respectively, com-
pressing and decompressing documents.

CTDL_encode takes the following parameters:

	 n	 char* filename—name of the input (uncompressed) 
document

	 n	 char* filename_out—name of the output (com-
pressed) document

	 n	 EFileType ftype—format of the input document, 
defined as:

	 	 enum EFileType { HTML, PDF, PS, RTF, TEX, TXT, 
XML};

	 n	 EDictionaryType dtype—dictionary type, defined 
as:

	 	 enum EDictionaryType { Static, SemiDynamic };

CTDL_decode takes the following parameters:

	 n	 char* filename—name of the input (compressed) 
document

	 n	 char* filename_out—name of the output (decom-
pressed) document

Table 1. Universal transform optimizations

CTDL Settings CTDL+ Settings

Format MinFr WdSpc SpRuns LetCnt WdSpc SpRuns LetCnt

HTML 3 + + + + + -

PDF 3 - - - - - -

PS 6 - + - - + -

RTF 3 + - + + - -

TEX 3 + + + + + +

TXT 6 + + + + + +

XML 3 + + + + + -
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The library was written in 
the C++ programming language, 
but a compiled static library is 
also distributed; thus it can be 
used in any language that can 
link such libraries. Currently, the 
library is compatible with two 
platforms: Microsoft Windows 
and Linux. 

To use static dictionaries, the 
respective dictionary file must 
be available. The library is sup-
plied with an English dictionary 
trained on a 3 GB text corpus 
from Project Gutenberg.23 Seven 
other dictionaries—German, 
Spanish, Finnish, French, 
Italian, Polish, and Russian—
can be freely downloaded from 
www.ii.uni.wroc.pl/~inikep/
research/dicts. There also is a tool that helps create a new 
dictionary from any given corpus of documents, available 
from Skibiński upon request via e-mail (inikep@ii.uni 
.wroc.pl).

The library can be used to reduce the storage require-
ments or also to reduce the time of delivering a requested 
document to the library user. In the first case, the decom-
pression must be done on the server side. In the second 
case, it must be done on the client side, which is pos-
sible because stand-alone decompressors are available for 
Microsoft Windows and Linux. Obviously, a library can 
support both options by providing the user with a choice 
whether a document should be delivered compressed or 
not. If documents are to be decompressed client-side, the 
basic CTDL, using a semidynamic dictionary, seems hand-
ier, since it does not require the user to obtain the static 
dictionary that was used to compress the downloaded doc-
ument. Still, the size of such a dictionary is usually small, 
so it does not disqualify CTDL+ from this kind of use.

n	 Experimental results

We tested CTDL experimentally on a benchmark set of 
text documents. The purpose of the tests was to compare 
the storage requirements of different document formats 
in compressed and uncompressed form.

In selecting the test files we wanted to achieve the 
following goals:

	 n	 test all the formats listed in table 1 (therefore we 
decided to choose documents that produced no 
errors during document format conversion)

	 n	 obtain verifiable results (therefore we decided to 
use documents that can be easily obtained from the 
Internet)

	 n	 measure the actual compression improvement 
from applying the proposed scheme (apart from 
the RTF format, the scheme is neutral to the images 
embedded in documents; therefore we decided to 
use documents that have no embedded images)

For these reasons, we used the following procedure 
for selecting documents to the test set. First, we searched 
the Project Gutenberg library for TEX documents, as this 
format can most reliably be transformed into the other 
formats. From the fifty-one retrieved documents, we 
removed all those containing images as well as those that 
the htlatex tool failed to convert to HTML. In the eleven 
remaining documents, there were four Jane Austen books; 
this overrepresentation was handled by removing three of 
them. The resulting eight documents are given in table 2.

From the TEX files we generated HTML, PDF, and PS 
documents. Then we used Word 2007 to transform HTML 
documents into RTF, DOC, and XML (thus this is the 
Microsoft Word XML format, not the Project Gutenberg 
XML format). The TXT files were downloaded from 
Project Gutenberg.

The tests were conducted on a low-end AMD Sempron 
3000+ 1.80 GHz system with 512 MB RAM and a Seagate 
80 GB ATA drive, running Windows XP SP2.

For comparison purposes, we used three general-
purpose compression programs:

	 n	 gzip implementing Deflate 
	 n	 bzip2 implementing a BWT-based compression 

algorithm

Table 2. Test set documents specification

File Name Title Author
TEX Size 
(bytes)

13601-t
Expositions of Holy Scripture: 
Romans Corinthians

Maclaren 1,443,056

16514-t
A Little Cook Book for a Little 
Girl

Benton  220,480

1noam10t North America, V. 1 Trollope  804,813

2ws2610 Hamlet Shakespeare  194,527

alice30 Alice in Wonderland Carroll  165,844

cdscs10t Some Christmas Stories Dickens  127,684

grimm10t Fairy Tales Grimm  535,842

pandp12t Pride and Prejudice Austen  727,415
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	 n	 PPMVC implementing a PPM-derived compres-
sion algorithm24

Tables 3–10 show

	 n	 the bitrate attained on each test file by the Deflate-
based gzip in default mode, the proposed com-
pression scheme in the semidynamic and static 
variants with Deflate as the back-end compression 
algorithm, 7-zip in LZMA mode, the proposed 
compression scheme in the semidynamic and static 

variants with LZMA as the back-end compression 
algorithm, bzip2 and PPMVC;

	 n	 the average bitrate attained on the whole test cor-
pus; and

	 n	 the total compression and decompression times (in 
seconds) for the whole test corpus, measured on the 
test platform (they are total elapsed times including 
program initialization and disk operations). 

Bitrates  are given in output bits per character of an 
uncompressed document in a given format, so a smaller 

Table 3. Compression efficiency and times for the TXT documents

Deflate LZMA 
bzip2 PPMVC

File Name gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 2.944 2.244 2.101 2.337 2.057 1.919 2.158 1.863

16514-t 2.566 2.150 1.969 2.228 1.993 1.838 2.010 1.780

1noam10t 2.967 2.337 2.109 2.432 2.151 1.958 2.160 1.946

2ws2610 3.217 2.874 2.459 2.871 2.659 2.312 2.565 2.343

alice30 2.906 2.533 2.184 2.585 2.360 2.056 2.341 2.090

cdscs10t 3.222 2.898 2.298 2.928 2.721 2.192 2.694 2.436

grimm10t 2.832 2.275 2.090 2.357 2.079 1.931 2.112 1.886

pandp12t 2.901 2.251 2.097 2.366 2.061 1.930 2.032 1.835

Average 2.944 2.445 2.163 2.513 2.260 2.017 2.259 2.022

Comp. Time 0.688 1.234 0.954 6.688 2.640 2.281 2.110 3.281

Dec. Time 0.125 0.454 0.546 0.343 0.610 0.656 0.703 3.453

Table 4. Compression efficiency and times for the TEX documents

 Deflate  LZMA 
bzip2 PPMVC

File Name gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 2.927 2.233 2.092 2.328 2.049 1.913 2.146 1.852

16514-t 2.277 1.904 1.794 1.957 1.744 1.645 1.746 1.534

1noam10t 2.976 2.370 2.142 2.445 2.186 1.986 2.195 1.976

2ws2610 3.206 2.906 2.482 2.864 2.674 2.323 2.562 2.340

alice30 2.897 2.526 2.183 2.573 2.350 2.048 2.332 2.085

cdscs10t 3.224 2.931 2.328 2.941 2.759 2.222 2.723 2.466

grimm10t 2.831 2.304 2.120 2.364 2.113 1.960 2.143 1.910

pandp12t 2.881 2.239 2.090 2.346 2.049 1.916 2.013 1.817

Average 2.902 2.427 2.154 2.477 2.241 2.002 2.233 1.998

Comp. Time 0.688 1.250 0.969 6.718 2.703 2.406 2.140 3.329

Dec. Time 0.109 0.453 0.547 0.360 0.609 0.672 0.703 3.485
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bitrate (of, e.g., RTF documents compared to the plain 
text) does not mean the file is smaller, only that the com-
pression was better. Uncompressed files have a bitrate of 
8 bits per character.

Looking at the results obtained for TXT documents 
(table 3), we can see an average improvement of 17 
percent for CTDL and 27 percent for CTDL+ compared 
to the baseline Deflate implementation. Compared to 
the baseline LZMA implementation, the improvement 
is 10 percent for CTDL and 20 percent for CTDL+. Also, 
CTDL+ combined with LZMA compresses TXT docu-
ments 31 percent better than gzip, 11 percent better than 
bzip2, and slightly better than the state-of-the-art PPMVC 
implementation.

In case of TEX documents (table 4), the gzip results 
were improved, on average, by 16 percent using CTDL 
and by 26 percent using CTDL+; the numbers for LZMA 
are 10 percent for CTDL and 19 percent for CTDL+. In a 
cross-method comparison, CTDL+ with LZMA beats gzip 
by 31 percent, bzip2 by 10 percent, and attains results 
very close to PPMVC.

On average, Deflate-based CTDL compressed XML 
documents 20 percent better than the baseline algorithm 
(table 5), and with CTDL+ the improvement rises to 26 
percent. CTDL improves LZMA compression by 11 per-
cent, and CTDL+ improves it by 18 percent. CTDL+ with 
LZMA beats gzip by 33 percent, bzip2 by 8 percent, and 
loses only 4 percent to PPMVC.

Similar results were obtained for HTML documents 
(table 6): they were compressed with CTDL and Deflate 
18 percent better than with the Deflate algorithm alone, 
and 27 percent better with CTDL+. LZMA compression 

efficiency is improved by 11 percent with CTDL and 20 
percent with CTDL+. CTDL+ with LZMA beats gzip by 
33 percent, bzip2 by 9 percent, and loses only 2 percent 
to PPMVC.

For RTF documents (table 7), the gzip results were 
improved, on average, by 18 percent using CTDL, and 25 
percent using CTDL+; the numbers for LZMA are respec-
tively 9 percent for CTDL and 17 percent for CTDL+. In a 
cross-method comparison, CTDL+ with LZMA beats gzip 
by 34 percent, bzip2 by 7 percent, and loses 5 percent to 
PPMVC.

Although there is no mode designed especially for 
DOC documents in CTDL (table 8), the basic TXT mode 
was used, as it was found experimentally to be the best 
choice available. The results show it managed to improve 
Deflate-based compression by 9 percent using CTDL, 
and by 21 percent using CTDL+, whereas LZMA-based 
compression was improved respectively by 4 percent for 
CTDL and 14 percent for CTDL+. Combined with LZMA, 
CTDL+ compresses DOC documents 30 percent better 
than gzip, 13 percent better than bzip2, and 1 percent bet-
ter than PPMVC.

In case of PS documents (table 9), the gzip results 
were improved, on average, by 5 percent using CTDL, 
and by 8 percent using CTDL+; the numbers for LZMA 
improved 3 percent for CTDL and 5 percent for CTDL+. 
In a cross-method comparison, CTDL+ with LZMA beats 
gzip by 8 percent, losing 5 percent to bzip2 and 7 percent 
to PPMVC.

Finally, CTDL improved Deflate-based compression of 
PDF documents (table 10) by 9 percent using CTDL and 10 
percent using CTDL+ (compared to gzip; the numbers are 

Table 5. Compression efficiency and times for the XML documents

 Deflate  LZMA 
bzip2 PPMVC

File Name gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 2.046 1.551 1.514 1.585 1.405 1.339 1.451 1.242

16514-t 0.871 0.698 0.670 0.703 0.612 0.590 0.599 0.552

1noam10t 2.383 1.870 1.736 1.914 1.711 1.575 1.724 1.515

2ws2610 0.691 0.539 0.497 0.561 0.474 0.440 0.461 0.422

alice30 1.477 1.258 1.140 1.248 1.131 1.034 1.116 0.999

cdscs10t 2.106 1.892 1.576 1.862 1.741 1.462 1.721 1.538

grimm10t 1.878 1.485 1.422 1.521 1.337 1.276 1.337 1.198

pandp12t 1.875 1.404 1.349 1.465 1.263 1.207 1.252 1.105

Average 1.666 1.337 1.238 1.357 1.209 1.115 1.208 1.071

Comp. Time 0.750 1.844 1.390 10.79 4.891 5.828 7.047 3.688

Dec. Time 0.141 0.672 0.750 0.421 0.859 0.953 1.140 3.907
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much higher if compared to the embedded PDF compres-
sion—see “native” column in table 10); the numbers for 
LZMA are respectively 7 percent for CTDL and 10 percent 
for CTDL+. Combined with LZMA, CTDL+ compresses 
PDF documents 28 percent better than gzip, 4 percent bet-
ter than bzip2, and 5 percent worse than PPMVC.

The results presented in tables 3–10 show that CTDL 
manages to improve compression efficiency of the gen-
eral-purpose algorithms it is based on. The scale of 
improvement varies between document types, but for 
most of them it is more than 20 percent for CTDL+ and 10 
percent for CTDL. The smallest improvement is achieved 
in case of PS (about 5 percent). Figure 1 shows the same 

results in another perspective: the bars show how much 
better compression ratios were obtained for the same 
documents using different compression schemes com-
pared to gzip with default options (0 percent means no 
improvement).

Compared to gzip, CTDL offers a significantly better 
compression ratio at the expense of longer processing 
time. The relative difference is especially high in case of 
decompression. However, in absolute terms, even in the 
worst case of PDF, the average delay between CTDL+ 
and gzip is below 180 ms for compression and 90 ms for 
decompression per file. Taking into consideration the 
low-end specification of the test computer, these results 

Table 6. Compression efficiency and times for the HTML documents

Deflate LZMA bzip2 PPMVC
File Name gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 2.696 2.054 1.940 2.121 1.868 1.751 1.932 1.670

16514-t 1.726 1.405 1.310 1.436 1.258 1.180 1.257 1.113

1noam10t 2.768 2.159 1.972 2.244 1.979 1.815 1.973 1.785

2ws2610 2.084 1.747 1.504 1.743 1.525 1.344 1.499 1.303

alice30 2.451 2.124 1.829 2.128 1.929 1.701 1.888 1.684

cdscs10t 2.880 2.593 2.084 2.597 2.410 1.966 2.348 2.131

grimm10t 2.603 2.074 1.916 2.138 1.883 1.752 1.889 1.688

pandp12t 2.640 2.037 1.891 2.120 1.826 1.717 1.777 1.596

Average 2.481 2.024 1.806 2.066 1.835 1.653 1.820 1.621

Comp. Time 0.750 1.438 1.078 8.203 3.421 3.328 2.672 3.500

Dec. Time 0.140 0.515 0.594 0.359 0.688 0.750 0.812 3.672

Table 7. Compression efficiency and times for the RTF documents

Deflate LZMA bzip2 PPMVC
File Name gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 1.882 1.431 1.372 1.428 1.267 1.200 1.300 1.120

16514-t 0.834 0.701 0.696 0.662 0.601 0.591 0.568 0.529

1noam10t 2.244 1.774 1.637 1.765 1.594 1.462 1.601 1.404

2ws2610 0.784 0.630 0.581 0.629 0.545 0.500 0.520 0.485

alice30 1.382 1.196 1.065 1.134 1.046 0.948 0.995 0.922

cdscs10t 2.059 1.882 1.558 1.784 1.704 1.432 1.645 1.488

grimm10t 1.618 1.301 1.227 1.285 1.150 1.082 1.149 1.010

pandp12t 1.742 1.340 1.264 1.336 1.169 1.115 1.142 1.012

Average 1.568 1.282 1.175 1.253 1.135 1.041 1.115 0.996

Comp. Time 0.766 2.047 1.500 12.62 6.500 7.562 8.032 3.922

Dec. Time 0.156 0.688 0.766 0.469 0.875 0.953 1.312 4.157
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certainly seem good enough for practical applications. 
Compared to LZMA, CTDL offers better compression 

and a shorter compression time at the expense of longer 
decompression time. Notice that the absolute gain in 
compression time is several times the loss in decompres-
sion time, and the decompression time remains short, 
noticeably shorter than bzip2’s and several times shorter 
than PPMVC’s. CTDL+ beats bzip2 (with the sole excep-
tion of PS documents) in terms of compression ratio and 
achieves results that are mostly very close to the resource-
hungry PPMVC.

n	 Conclusions

In this paper we addressed the problem of compressing 
text documents. Although individual text documents 
rarely exceed several megabytes in size, their entire col-
lections can have very large storage space requirements.

Although text documents are often compressed with 
general-purpose methods such as Deflate, much better 
compression can be obtained with a scheme specialized 
for text, and even better if the scheme is additionally 
specialized for individual document formats. We have 
developed such a scheme (CTDL), beginning with a 
text transform designed earlier for XML documents and 

Table 8. Compression efficiency and times for the DOC documents

Deflate LZMA bzip2 PPMVC
File Name gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 2.798 2.183 2.062 2.181 1.976 1.854 2.115 1.818

16514-t 2.226 2.213 2.073 1.712 1.712 1.652 1.919 1.686

1noam10t 2.851 2.250 2.025 2.289 2.057 1.869 2.113 1.870

2ws2610 2.497 2.499 2.210 2.095 2.095 1.890 2.251 1.999

alice30 2.744 2.714 2.270 2.345 2.345 2.038 2.348 2.058

cdscs10t 2.916 2.891 2.231 2.559 2.560 2.062 2.475 2.196

grimm10t 2.691 2.677 2.059 2.179 2.179 1.856 2.075 1.833

pandp12t 2.761 2.171 2.050 2.189 1.955 1.843 1.983 1.770

Average 2.686 2.450 2.123 2.194 2.110 1.883 2.160 1.904

Comp. Time 0.718 1.312 1.031 7.078 4.063 3.001 2.250 3.421

Dec. Time 0.125 0.375 0.547 0.344 0.547 0.718 0.735 3.625

Table 9. Compression efficiency and times for the PS documents

Deflate LZMA bzip2 PPMVC
File Name gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 2.847 2.634 2.589 2.213 2.105 2.074 2.011 1.778

16514-t 3.226 3.129 3.039 2.730 2.707 2.699 2.613 2.505

1noam10t 2.718 2.551 2.490 2.147 2.060 2.015 1.892 1.694

2ws2610 3.064 2.922 2.795 2.600 2.521 2.450 2.336 2.186

alice30 3.224 3.154 3.026 2.750 2.745 2.691 2.553 2.400

cdscs10t 3.110 3.029 2.890 2.657 2.683 2.579 2.447 2.276

grimm10t 2.833 2.664 2.597 2.288 2.200 2.162 2.074 1.863

pandp12t 2.814 2.533 2.468 2.193 2.049 1.998 1.858 1.644

Average 2.980 2.827 2.737 2.447 2.384 2.334 2.223 2.043

Comp. Time 1.328 3.015 2.500 14.23 10.96 11.09 4.171 5.765

Dec. Time 0.203 0.688 0.781 0.609 1.063 1.125 1.360 6.063



152   I  NFORMATION TECHNOLOGY AND LIBRARIES   |  September 2009

modifying it for the requirements 
of each of the investigated docu-
ment formats. It has two operation 
modes: basic CTDL and CTDL+ 
(the latter uses a common word 
dictionary for improved compres-
sion) and uses two back-end com-
pression algorithms: Deflate and 
LZMA (differing in compression 
speed and efficiency).

The improvement in com-
pression efficiency, which can 
be observed in the experimental 
results, amounts to a significant 
reduction of data storage require-
ments, giving the reasons to use 
the library in both new and exist-
ing digital library projects instead 
of general-purpose compression 
programs. To facilitate this pro-
cess, we implemented the scheme 
as an open-source software library 
under the same name, freely avail-
able at http://www.ii.uni.wroc 
.pl/~inikep/research/CTDL/
CTDL09.zip. 

Although the scheme and the 
library are now complete, we plan 
future extensions aiming both to 
increase the level of specializa-
tions for currently handled docu-
ment formats and to extend the 
list of handled document formats. 

Table 10. Compression efficiency and times for the (uncompressed) PDF documents

Deflate LZMA
bzip2 PPMVC

File Name native gzip CTDL CTDL+ 7-zip CTDL CTDL+

13601-t 3.443 2.624 2.191 2.200 1.986 1.708 1.656 1.852 1.659

16514-t 4.370 2.839 2.836 2.810 2.422 2.422 2.328 2.378 2.241

1noam10t 3.379 2.522 2.103 2.094 1.924 1.659 1.603 1.770 1.587

2ws2610 3.519 2.204 2.346 2.248 1.781 1.947 1.860 1.625 1.480

alice30 3.886 2.863 2.753 2.668 2.429 2.308 2.216 2.315 2.137

cdscs10t 3.684 2.835 2.688 2.557 2.399 2.276 2.164 2.260 2.079

grimm10t 3.543 2.557 2.135 2.120 2.008 1.713 1.661 1.858 1.696

pandp12t 3.552 2.684 2.267 2.256 2.071 1.831 1.769 1.870 1.705

Average 3.672 2.641 2.415 2.369 2.128 1.983 1.907 1.991 1.823

Comp. Time n/a 1.594 3.672 3.250 19.62 13.31 16.32 5.641 7.375

Dec. Time n/a 0.219 0.844 0.969 0.719 1.219 1.360 1.765 7.859

Figure 1. Compression improvement relative to gzip
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