
Author Name
and Second Author

The use of Ajax, or Asynchronous JavaScript + XML,
can result in Web applications that demonstrate the
flexibility, responsiveness, and usability traditionally
found only in desktop software. To illustrate this, a
repository metasearch user interface, OJAX, has been
developed. OJAX is simple, unintimidating but power-
ful. It attempts to minimize upfront user investment and
provide immediate dynamic feedback, thus encouraging
experimentation and enabling enactive learning.
This article introduces the Ajax approach to the develop-
ment of interactive Web applications and discusses its
implications. It then describes the OJAX user interface
and illustrates how it can transform the user experience.

With the introduction of the Ajax development
paradigm, the dynamism and richness of desk-
top applications become feasible for Web-based

applications. OJAX, a repository metasearch user inter-
face, has been developed to illustrate the potential impact
of Ajax-empowered systems on the future of library
software.1

This article describes the Ajax method, highlights
some uses of Ajax technology, and discusses the implica-
tions for Web applications. It goes on to illustrate the user
experience offered by the OJAX interface.

■ Ajax

In February 2005, the term Ajax acquired an additional
meaning: Asynchronous JavaScript + XML.2 The con-
cept behind this new meaning, however, has existed
in various forms for several years. Ajax is not a single
technology but a general approach to the development
of interactive Web applications. As the name implies, it
describes the use of JavaScript and XML to enable asyn-
chronous communication between browser clients and
server-side systems.

As explained by Garrett, the classic Web application
model involves user actions triggering a hypertext trans-
fer protocol (HTTP) request to a Web server.3 The latter
processes the request and returns an entire hypertext
markup language (HTML) page. Every time the client
makes a request to the server, it must wait for a response,
thus potentially delaying the user. This is particularly
true for large data sets. But research demonstrates that
response times of less than one second are required when
moving between pages if unhindered navigation is to be
facilitated through an information space.4

The aim of Ajax is to avoid this wait. The user loads

not only a Web page, but also an Ajax engine written in
JavaScript. Users interact with this engine in the same
way that they would with an HTML page, except that
instead of every action resulting in an HTTP request
for an entire new page, user actions generate JavaScript
calls to the Ajax engine. If the engine needs data from
the server, it requests this asynchronously in the back-
ground. Thus, rather than requiring the whole page
to be refreshed, the JavaScript can make rapid incre-
mental updates to any element of the user interface
via brief requests to the server. This means that the
traditional page-based model used by Web applications
can be abandoned; hence, the pacing of user interaction
with the client becomes independent of the interaction
between client and server.

XMLHttpRequest is a collection of application pro-
gramming interfaces (APIs) that use HTTP and JavaScript
to enable transfer of data between Web servers and
Web applications.5 Initially developed by Microsoft,
XMLHttpRequest has become a de facto standard for
JavaScript data retrieval and is implemented in most
modern browsers. It is commonly used in the Ajax para-
digm. The data accessed from the HTTP server is usually
in Extensible Markup Language (XML) but another for-
mat, such as JavaScript Object Notation, could be used.6

Applications of Ajax

Google is the most significant user of Ajax technology
to date. Most of its recent innovations, including Gmail,
Google Suggest, Google Groups, and Google Maps,
employ the paradigm.7

The use of Ajax in Google Suggest improves the tradi-
tional Google interface by offering real-time suggestions
as the user enters a term in the search field. For example,
if the user enters xm, Google Suggest might offer refine-
ments such as xm radio, xml, and xmods. Experimental
Ajax-based auto-completion features are appearing in a
range of software.8 Shanahan has applied the same ideas
to the Amazon online bookshop.9 His experimental site,
Zuggest, extends the concept of auto-completion: as the
user enters a term, the system automatically triggers a
search without the need to hit a search button.

The potential of Ajax to improve the responsiveness
and richness of library applications has not been lost on
the library community.10 Several interesting experiments
have been tried. At OCLC, for example, a “suggest-like
service,” based on controlled headings from the world-

Judith Wusteman and
Pádraig O’hIceadha

USING AJAX TO EMPOWER DYNAMIC SEARCHING | WUSTEMAN 57

Using Ajax to Empower
Dynamic Searching

Judith Wusteman (judith.wusteman@ucd.ie) is a lecturer in
the UCD School of Information and Library Studies, University
College Dublin, Ireland.

58 INFORMATION TECHNOLOGY AND LIBRARIES | JUNE 2006

wide union catalog, WorldCat, has been implemented.11
Ajax has also been used in the OCLC DeweyBrowser.12
The main page of this browser includes four iframes,
or inline frames, three for the three levels of Dewey
Decimal Classification and a fourth for record display.13
The use of Ajax allows information in each iframe to be
updated independently without having to reload the
entire page.

Implications of Ajax

There have been many attempts to enable asynchronous
background transactions with a server. Among alter-
natives to Ajax are Flash, Java Applets, and the new
breed of XML user-interface language formats such
as XML User Interface Language (XUL) and Extensible
Application Markup Language (XAML).14 These all
have their place, particularly languages such as XUL.
The latter is ideal for use in Mozilla extensions, for
example. Combinations of the above can and are being
used together; XUL and Ajax are both used in the Firefox
extension version of Google Suggest.15 The main advan-
tage of Ajax over these alternative approaches is that it
is nonproprietary and is supported by any browser that
supports JavaScript and XMLHttpRequest—hence, by
any modern browser.

It could be validly argued that complex client-side
JavaScript is not ideal. In addition to the errors to which
complex scripting can be prone, there are accessibility
issues. Best practice requires that JavaScript interaction
adds to the basic functionality of Web-based content
that must remain accessible and usable without the
JavaScript.16 An alternative non-JavaScript interface to
Gmail was recently implemented to deal with just this
issue.

A move away from scripting would, in theory, be a
positive step for the Web. In practice, however, proce-
dural approaches continue to be more popular; attempts
to supplant them, as epitomized by XHTML 2.0, simply
alienate developers.17

It might be assumed that the use of Ajax technol-
ogy would result in a heavier network load due to an
increase in the number of requests made to the server.
This is a misconception in most cases. Indeed, Ajax can
dramatically reduce the network load of Web appli-
cations, as it enables them to separate data from the
graphical user interface (GUI) used to display it. For
example, each results page presented by a traditional
search engine delivers, not only the results data, but also
the HTML required to render the GUI for that page. An
Ajax application could deliver the GUI just once and,
after that, deliver data only. This would also be pos-
sible via the careful use of frames; the latter could be
regarded as an Ajax-style technology but without all of
Ajax’s advantages.

■ From client-server to SOA

The dominant model for building network applications
is the client/server approach, in which client software
is installed as a desktop application and data generally
reside on a server, usually in a database.18 This can work
well in a homogenous single-site computing environ-
ment. But institutions and consortia are likely to be het-
erogeneous and geographically distributed. PCs, Macs,
and cell phones will all need access to the applications,
and Linux may require support alongside Windows.
Even if an organization standardizes solely on Windows,
different versions of the latter will have to be supported,
as will multiple versions of those ubiquitous Dynamic
Link Libraries (DLLs). Indeed, the problems of obtaining
and managing conflicting DLLs have spawned the term
“DLL hell.”19

In Web applications, a standard client, the browser,
is installed on the desktop but most of the logic, as well
as the data, reside on the server. Of course, the browser
developers still have to worry about “DLL hell,” but this
need not concern the rest of us.

“Speed must be the overriding design criterion” for
Web pages.20 But the interactivity and response times
possible with client/server applications are still not avail-
able to traditional Web applications. This is where Ajax
comes in: it offers, to date, the best of the Web application
and client/server worlds. Much of the activity is moved
back to the desktop via client-side code. But the advan-
tages of Web applications are not lost: the browser is still
the standard client.

Service-Oriented Architecture (SOA) is an increas-
ingly popular approach to the delivery of applications
to heterogeneous computing environments and geo-
graphically dispersed user populations.21 SOA refers to
the move away from monolithic applications toward
smaller, reusable services with discrete functionality.
Such services can be combined and recombined to
deliver different applications to users. Web Services is an
implementation of SOA principles.22 The term describes
the use of technologies such as XML to enable the seam-
less interoperability of Web-based applications. Ajax
enables Web Services and hence enables SOA principles.
Thus, the adoption of Ajax facilitates the move toward
SOA and all the advantages of reuse and integration that
this offers.

■ ARC

ARC is an experimental open-source metasearch pack-
age available for download from the SourceForge open-
source foundry.23 It can be configured to harvest Open

USING AJAX TO EMPOWER DYNAMIC SEARCHING | WUSTEMAN 59

Archives Initiative-Protocol for Metadata Harvesting
(OAI-PMH)-compliant data from multiple repositories.24
The harvested results are stored in a relational database
and can be searched using basic Web forms. ARC’s
Advanced Search form is illustrated in figure 1.

■ Applying Ajax to the search GUI

The use of Ajax has the potential to narrow the gulf
between the responsiveness of GUIs for Web applications
and those for desktop applications. The flexibility, usabil-
ity, and richness of the latter are now possible for the
former. The OJAX GUI, illustrated in figure 2, has been
developed to demonstrate how Ajax can improve the
richness of ARC-like GUIs. OJAX, including full source
code, is available under the open-source Apache license
and is hosted on SourceForge.25

OJAX comprises a client-side GUI, implemented in
JavaScript and HTML, and server-side metasearch Web
Services, implemented in Java. The Web Services connect
directly to a metasearch database created by ARC from
harvested repositories. The database connectivity lever-
ages several libraries from the Apache Jakarta project,
which provides open-source Java solutions.26

■ Development process

The OJAX GUI was developed iteratively using Agile
software development methods.27 Features were added
incrementally and feedback gained from a proxy user.
In order to gain an in-depth understanding of the sys-
tem and the implications for the remainder of the GUI,
features were initially built from scratch, using object-
oriented JavaScript.They were then rebuilt using three
open-source JavaScript libraries: Prototype, script.aculo
.us, and Rico.28

Prototype provides base Ajax capability. It also
includes advanced functionality for object-oriented
JavaScript, such as multiple inheritance. The other two
libraries are built on top of Prototype. The script.aculo.
us library specializes in dynamic effects, such as those
used in auto-completion. The Rico library, developed by
Sabre, provides other key JavaScript effects—for example,
dynamic scrollable areas and dynamic sorting.29

■ Storyboard

One of the aims of the National Information Standards
Organization (NISO) Metasearch Initiative is to enable

all library users to “enjoy the same easy searching found
in web-based services like Google.”30 Adopting this
approach, OJAX incorporates the increasingly common
concept of the search bar, popularized by the Google
Toolbar.31 OJAX aims to be as simple, uncluttered, and
unthreatening as possible. The goal is to reflect the sim-
ple-search experience while, at the same time, providing
the power of an advanced search. Thus, the user interface
has been kept as simple as possible while maintaining
equivalent functionality with the ARC Advanced Search
interface. All ARC functionality, with the exception of the
grouping feature, is provided.

To help the intuitive flow of the operation, the fields
are set out as a sentence:

Find [term(s)] in [all archives] from [earliest year] until
[this year] in [all subjects]

Tool tips are available for text-entry fields. By default,
searching is on author, title, and abstract. These fields map
to the creator, title, and description Dublin Core meta-
data fields harvested from the original repositories.32 The
search can be restricted by deselecting unwanted fields.

ARC supports both MySQL and Oracle databases.33
MySQL has been chosen for OJAX as MySQL is an
open-source database. Boolean search syntax has been

Figure 1. ARC’s Advanced Search form

Figure 2. The OJAX Metasearch User Interface

60 INFORMATION TECHNOLOGY AND LIBRARIES | JUNE 2006

implemented in OJAX to allow for more powerful search-
ing. The syntax is similar to that used by Google in that
it identifies AND/OR and exact phrase functionality by
+/- and “ ”. Hence it preserves the user’s familiarity with
basic Google search syntax. However, it is not as powerful
as the full Google search syntax; for example, it does not
support query modifiers such as:

intitle: 34

The focus of this research is the application of Ajax
to the search GUI and not the optimization of the power
or expressive capability of the underlying search engine.
However, the implementation of an alternative back end
that uses a full-text search engine, such as Apache Lucene,
would improve the expressive power of advanced que-
ries.35 Full-text search expressiveness is likely to be key
to the usability of OJAX, ensuring its adequacy for the
advanced user without alienating the novice.

■ Unifying the user interface

One of the main aims of OJAX is the unification of the
user interface. Instead of offering distinct options for
simple and advanced search and for refining a completed
search, the interface is sufficiently dynamic to make this
unnecessary. The user need never navigate between
pages because all options, both simple and advanced, are
available from the same page. And all results are made
available on that same page in the form of a scrollable list.
The only point at which a new page is presented is when
the resource identifier of a result is clicked. At this stage,
a pop-up window, external to the OJAX session, displays
the full metadata for that resource. This page is generated
by the external repository from which the record was
originally harvested.

Simple and advanced search options are usually kept
separate because most users are unwilling or unable to use
the latter.36 Furthermore, the design of existing search-user
interfaces is based on the assumption that the retrieval of
results will be sufficiently time-consuming that users will
want to have selected all options beforehand.

With OJAX, however, users do not have to make
a complete choice of all the options they might want
to try before they see any results. As data are entered,
answers flow to accommodate them. Because the inter-
face is so dynamic and responsive and because users
are given immediate feedback, they do not have to be
concerned about wasting time due to the wrong choice
of search options. Users iterate toward the search results
they require by manipulating the results in real time.
The reduced level of investment that users must make
before they achieve any return from the system should

encourage them to experiment, hence promoting enac-
tive learning.

■ Auto-completion

In order to provide instant feedback to the user, the
search-terms field and the subject field use Ajax to auto-
complete user entries. Figure 3 illustrates the result of
typing Smith in the search-terms field. A list is automati-
cally dropped down that itemizes all matches and the
number of their occurrences. Users select the term they
want, the entire field is automatically completed, and a
search is triggered.

The ARC system denormalizes some of the harvested
data before saving them in its database. For example, it
merges all the author fields into one single field, each
name separated by a bar character. To enable the OJAX
auto-completion feature, it was necessary to renormalize
the names. A new table is used to store each name in a
separate row; names are referenced by the resource iden-
tifier. To enable this, ARC’s indexing code was updated
so that it creates this table as it indexes records extracted
from the OAI-PMH feed.

In its initial implementation, OJAX uses a simple
algorithm for auto-completion. Future work will involve
developing a more complex heuristic that will return
results more closely satisfying user requirements.

■ Auto-search

As already mentioned, a central theme of OJAX is the
attempt to reduce the commitment necessary from users
before they receive feedback on their actions. One way
in which dynamic feedback is provided is the triggering
of an immediate search whenever an entire option has
been selected. Examples of entire options include choice
of an archive or year and acceptance of a suggested auto-
completion. In addition, the following heuristics are used
to identify when a user is likely to have finished entering a
search term and, thus, when a search should be triggered:

1. Entering a space character in the search-terms field or
subject field

2. Tabbing out of a field after having modified its con-
tents

3. Five seconds of user inactivity for a modified field

The third heuristic aims to catch some of the edge
cases that the other heuristics may miss. It is assumed
likely that a term has been completed if a user has made
no edits in the last five seconds. As each term will be

USING AJAX TO EMPOWER DYNAMIC SEARCHING | WUSTEMAN 61

separated by a space, it is only the last term in a search
phrase that is likely not to trigger an auto-search via the
first heuristic.

Users can click the search button whenever they wish,
but they should never have to click it. The Zuggest sys-
tem abandons the search button entirely; OJAX retains it,
mainly in order to avoid confounding user expectations.37

While a search is in progress, the search button is
greyed out and acquires a red border. This is particularly
useful in alerting the user that a search has been auto-
matically triggered.

This is the only feature of OJAX that may have an
impact on network load in terms of slightly higher traffic.
However, the increased number of requests is offset by a
reduction in the size of each response because the GUI is
not downloaded with it. For example, initiating a search
in ARC results in an average response size of 57.32K.
The response is in the form of a complete HTML page.
Initiating a search in OJAX results in an average response
size of 7.96K. The latter comprises a Web Service response
in XML. In other words, more than seven OJAX auto-
searches would have to be triggered before the size of the
initial search result in ARC was exceeded.

■ Dynamic archive list

The use of Ajax enables a static HTML page to contain a
small component of dynamic data without the entire page
having to be dynamically generated on the server. OJAX
illustrates this: the contents of the drop-down box listing
the searchable archives are not hard-coded in the HTML
page. Rather, when the page is loaded, an Ajax request for
the set of available archives is generated. This is a useful
technique; static HTML pages can be cached by browsers
and proxy servers, and only the dynamic portion of the
data, perhaps those used to personalize the page, need be
downloaded at the start of a new session.

■ Dynamic scrolling

Searches commonly produce thousands of results. Typ-
ical systems, such as Google and ARC, make these
results available via a succession of separate pages,
thus requiring users to navigate between them. Finding
information by navigating multiple pages can take
longer than scrolling down a single page, and users
rarely look beyond the second page of search results.38
To avoid these problems and to encourage users to look
at more of the available results, those results could be
made available in one scrollable list. But, in a typical
non-Ajax application, accessing a scrollable list of, say,

two thousand items would require the entire list to be
downloaded via one enormous HTML page. This would
be a huge operation; if it did not crash the browser, it
would, at least, result in a substantial wait for the user.

The Rico library provides a feature to enable dynamic
scrollable areas. It uses Ajax to fetch more records from
the server when the user begins to scroll off the visible
area. This is used in the display of search results in OJAX,
as illustrated in figure 4. To the user, it appears that the
scrollable list is seamless and that all 4,678 search results
are already downloaded. In fact, only 386 have been
downloaded. The rest are available at the server. As the
user scrolls further down, say to item 396, an Ajax request
is made for the next ten items. Any item downloaded is
cached by the Ajax engine and need not be requested
again if, for example, the user scrolls back up the list.

A dynamic information panel is available to the right
of the scroll bar. It shows the current scroll position in
relation to the beginning and end of the results set. In

Figure 3. Auto-completion in the search terms field

Figure 4. Display of search results and dynamic information panel

62 INFORMATION TECHNOLOGY AND LIBRARIES | JUNE 2006

figure 4, the information panel indicates that there are
4,678 results for this particular search and that the cur-
rent scroll position is at result number 386. This number
updates instantly during scrolling, preserving the illusion
that all results have been downloaded and providing
users with dynamic feedback on their progress through
the results set. This means that users do not have to wait
for the main results window to refresh to identify their
current position.

■ Auto-expansion of results

OJAX aims to provide a compact display of key informa-
tion, enabling users to see multiple results simultane-
ously. It also aims to provide simple access to full result
details without requiring navigation to a new Web page.

In the initial results display, only one line each of
the title, authors, and subject fields, and two lines of the
abstract, are shown for each item. As the cursor is placed
on the relevant field, the display expands to show any
hidden detail in that field. At the same time, the back-
ground color of the field changes to blue. When the cur-
sor is placed on the bar containing the resource identifier,
all display fields for that item are expanded, as illustrated
in figure 5.

This expansion is enabled via simple Cascading Style
Sheet (CSS) features. For example, the following CSS dec-
laration hides all but the first line of authors:

#searchResults td div
{
 overflow:hidden;
height: 1.1em
}

When the cursor is placed on the author details, the
overflow becomes visible and the display field changes
its dimensions to fit the text inside it:

#searchResults td div:hover
{
overflow:visible;
 height:auto
}

■ Sorting results

Another method used by OJAX to minimize upfront
user investment is to provide initial search results before
requiring the user to decide on sort options. Because

results are available so quickly and because they can be
re-sorted so rapidly, it is not necessary to offer pre-search
selection of sort options. Ajax facilitates rapid presen-
tation of results; after a re-sort, only those on the first
screen must be downloaded before they can be presented
to the user.

Results may be sorted by title, author, subject,
abstract, and resource identifier. These options are
listed on the gray bar immediately above the results
list. Clicking one of these options sorts the results in
ascending order; an upward-pointing arrow appears to
the right of the Sort option chosen, as illustrated in fig-
ure 6. Clicking on the option again sorts in descending
order and reverses the direction of the arrow. Clicking
on the arrow removes the sort; the results revert to their
original order.

Functionality for the Sort feature is provided by the
Rico JavaScript library. Server-side implementation sup-
ports these features by caching search results so that it
is not necessary to regenerate them via a database query
each time.

Figure 5. Auto-expansion of all fields for item number 386

Figure 6. Results being sorted in ascending order by title

USING AJAX TO EMPOWER DYNAMIC SEARCHING | WUSTEMAN 63

■ Search history

Several experimental systems—for example, Zuggest—
have employed Ajax to facilitate a search-history feature.
A similar feature could be provided for OJAX. A button
could be added to the right of the results list. When cho-
sen, it could expand a collapsible search-history sidebar.
As the cursor was placed on one of the previous searches
listed in the sidebar, a call out, that is, a speech bubble,
could be displayed. This could provide further informa-
tion such as the number of matches for that search and
a summary of the search results clicked on by the user.
Clicking one of the previous searches would restore those
search results to the main results window.

This feature would take advantage of the Ajax per-
sistent JavaScript engine to maintain the history. Its use
could help counter concerns about Ajax technology
“breaking” the Back button; the feature could be imple-
mented so that the Back button returned the user to the
previous entry in the search history.39 In fact, this imple-
mentation of Back-button functionality could be more
useful than the implementation in Google, where hitting
the Back button is likely to take the user to an interim
results page; for example, it might simply take the user
from page 3 of results to page 2 of results.

■ Scrapbook

Users browsing through search results on OJAX would
require some simple method of maintaining a record of
those resource details that interested them. Ajax could
enable the development of a useful scrapbook feature to
which such resource details could be copied and stored
in the persistent JavaScript engine. OJAX could further
leverage a shared bookmark Web Service, such as del.
icio.us or Furl, to save the scrapbook for use in future ses-
sions and to share it with other members of a research or
interest group.40

■ Potential developments for OJAX

As well as searching a database of harvested metadata,
the OJAX user interface could also be used to search an
OAI-PMH-compliant repository directly. With appropri-
ate implementation, all of OJAX’s current features could
be made available, apart from auto-completion.

A recent development has enabled the direct indexing
of repositories by Google using OAI-PMH.41 The latter
provides Google with additional metadata that can be
searched via the Google Web Services APIs. The current

OJAX Web Services could be replaced by the Google
APIs, thus eliminating the need for OJAX to host any
server-side components. Hence, OJAX could become an
alternative GUI for Google searching.

■ Conclusion

OJAX demonstrates that the use of Ajax can enable
features in Web applications that, until now, have been
restricted to desktop applications. In OJAX, it facilitates
a simple, nonthreatening, but powerful search user inter-
face. Page navigation is eliminated; dynamic feedback
and a low initial investment on the part of users encour-
age experimentation and enable enactive learning. The
use of Ajax could similarly transform other Web applica-
tions aimed at library patrons.

However, Ajax is still maturing, and the barrier
to entry for developers remains high. We are a long
way from an Ajax button appearing in Dreamweaver.
Reusable, well-tested components, such as Rico, and
software frameworks, such as Ruby on Rails, Sun’s J2EE
framework, and Microsoft’s Atlas, will help to make Ajax
technology accessible to a wider range of developers.42

As with all new technologies, there is a temptation to
use Ajax simply because it exists. As Ajax matures, it is
important that its focus does not become the enabling of
“cool” features but remains the optimization of the user
experience.

References and notes

 1. OJAX homepage, http://ojax.sourceforge.net (accessed
Apr. 5, 2006).
 2. J. J. Garrett, “Ajax: A New Approach to Web Applica-
tions,” Feb. 18, 2005, www.adaptivepath.com/publications/
essays/archives/000385.php (accessed Nov. 11, 2005).
 3. Ibid.
 4. J. Nielsen, “The Need for Speed,” Alertbox Mar. 1, 1997,
www.useit.com/alertbox/9703a.html (accessed Nov. 11, 2005).
 5. Dynamic HTML and XML: The XMLHttpRequest Object,
http://developer.apple.com/internet/webcontent/xmlhttpreq
.html (accessed Apr. 5, 2006).
 6. JavaScript Object Notation, Wikipedia definition, http://
en.wikipedia.org/wiki/JSON (accessed Apr. 5, 2006).
 7. Google Gmail, http://mail.google.com (accessed Apr.
5, 2006); Google Suggest, www.google.com/webhp?complete
=1&hl=en (accessed Apr. 5, 2006); Google Groups, http://groups
.google.com (accessed Apr. 5, 2006); Google Maps, http://maps
.google.com (accessed Apr. 5, 2006).
 8. P. Binkley, “Ajax and Auto-completion,” Quædam cuiusdam
blog May 18, 2005, www.wallandbinkley.com/quaedam/?p=27
(accessed Nov. 11, 2005).
 9. Francis Shanahan, Zuggest, www.francisshanahan.com/
zuggest.aspx (accessed Apr. 5, 2006).

64 INFORMATION TECHNOLOGY AND LIBRARIES | JUNE 2006

 10. A. Rhyno, “Ajax and the Rich Web Inter-
face,” LibraryCog blog Apr. 10, 2005, http://librarycog
.uwindsor.ca:8087/artblog/librarycog/1113186562 (accessed
Nov. 11, 2005); R. Tennant, “Tennant’s Top Tech Trend Tidbit,”
LITA Blog June 22, 2005, http://litablog.org/?p=35 (accessed
Nov. 11, 2005).
 11. T. Hickey, “Ajax and Web Interfaces,” Outgoing blog,
Mar. 31, 2005. Retrieved Nov. 11, 2005 http://outgoing.typepad
.com/outgoing/2005/03/web_application.html.
 12. OCLC DeweyBrowser. http://ddcresearch.oclc.org/
ebooks/fileServer (accessed Apr. 5, 2006).
 13. Hickey, “Ajax and Web Interfaces.”
 14. J. Wusteman, “From Ghostbusters to Libraries: The Power
of XUL,” Library Hi Tech 23, no 1 (2005a). Retrieved Nov. 11,
2005 www.ucd.ie/wusteman/; Cover Pages, Microsoft Exten-
sible Application Markup Language (XAML), http://xml.cover
pages.org/ms-xaml.html (accessed Apr. 5, 2006).
 15. Google Extensions for Firefox, http://toolbar.google
.com/firefox/extensions/index.html (accessed Apr. 5, 2006).
 16. C. Adams, “Ajax: Usable Interactivity with Remote
Scripting,” SitePoint. (Jul. 13, 2005), www.sitepoint.com/article/
remote-scripting-ajax (accessed Nov. 11, 2005).
 17. XHTML 2.0, W3C Working Draft, May 27, 2005, www
.w3.org/TR/2005/WD-xhtml2-20050527 (accessed Apr. 5,
2006).
 18. Client/server model, http://en.wikipedia.org/wiki/
Client/server (accessed Apr. 5, 2006).
 19. DLL Hell, http://en.wikipedia.org/wiki/DLL_hell
(accessed Apr. 5, 2006).
 20. J. Nielsen, “The Need for Speed.”
 21. Service-Oriented Architecture, http://en.wikipedia.org/
wiki/Service-oriented_architecture (accessed Apr. 5, 2006).
 22. J. Wusteman, “Realizing the Potential of Web Services,”
OCLC Systems & Services: International Digital Library Perspectives
22, no. 1 (2006): 5–9.
 23. ARC—A Cross Archive Search Service, Old Dominion
University Digital Library Research Group, http://arc.cs.odu
.edu (accessed Apr. 5, 2006); NISO MetaSearch Initiative, www
.niso.org/committees/MS_initiative.html (accessed Apr. 5,
2006); ARC download page, SourceForge, http://oaiarc.source
forge.net (accessed Apr. 5, 2006).
 24. Open Archives Initiative Protocol for Metadata Harvest-
ing, www.openarchives.org/OAI/openarchivesprotocol.html
(accessed Apr. 5, 2006).
 25. OJAX download page, SourceForge, http://sourceforge
.net/projects/ojax (accessed Apr. 5, 2006).

 26. Apache Jakarta Project, http://jakarta.apache.org
(accessed Apr. 5, 2006); Apache Jakarta Commons DBCP, http://
jakarta.apache.org/commons/dbcp (accessed Apr. 5, 2006);
Apache Jakarta Commons DbUtils, http://jakarta.apache.org/
commons/dbutils (accessed Apr. 5, 2006).
 27. Agile software development definition, Wikipedia,
http://en.wikipedia.org/wiki/Agile_software_development
(accessed Apr. 5, 2006).
 28. Prototype JavaScript Framework, http://prototype.conio
.net (accessed Apr. 5, 2006); script.aculo.us, http://script.aculo
.us (accessed Apr. 5, 2006); Rico, http://openrico.org/rico/
home.page (accessed Apr. 5, 2006).
 29. Sabre, www.sabre.com (accessed Apr. 5, 2006).
 30. NISO MetaSearch Initiative, www.niso.org/committees/
MS_initiative.html (accessed Apr. 5, 2006).
 31. Google Toolbar, http://toolbar.google.com (accessed Apr.
5, 2006).
 32. Dublin Core Metadata Initiative, http://dublincore.org
(accessed Apr. 5, 2006).
 33. MySQL, www.mysql.com (accessed Apr. 5, 2006).
 34. Google Help Center, Advanced Operators, www.google
.com/help/operators.html (accessed Apr. 5, 2006).
 35. Apache Lucene, http://lucene.apache.org (accessed Apr.
5, 2006).
 36. J. Nielsen, “Search: Visible and Simple,” Alertbox May 13,
2001, www.useit.com/alertbox/20010513.html (accessed Nov.
11, 2005).
 37. Francis Shanahan, Zuggest.
 38. J. R. Baker, “The Impact of Paging versus Scrolling
on Reading Online Text Passages,” Usability News 5, no. 1
(2003), http://psychology.wichita.edu/surl/usabilitynews/51/
paging_scrolling.htm (accessed Nov. 11, 2005); J. Nielsen,
“Search: Visible and Simple.”
 39. J. J. Garrett, “Ajax: A New Approach to Web Applica-
tions.”
 40. del.icio.us, http://del.icio.us (accessed Apr. 5, 2006);
Furl, www.furl.net (accessed Apr. 5, 2006).
 41. Google Sitemaps (BETA) Help, www.google.com/web
masters/sitemaps/docs/en/other.html (accessed Apr. 5, 2006).
 42. Ruby on Rails, www.rubyonrails.org (accessed Apr. 5,
2006); Java 2 Platform, Enterprise Edition (J2EE), http://java
.sun.com/j2ee (accessed Apr. 5, 2006); M. LaMonica, “Microsoft
Gets Hip to AJAX,” CNET News.com, June 27, 2005, http://
news.com.com/Microsoft+gets+hip+to+AJAX/2100-1007_3
-5765197.html (accessed Nov. 11, 2005).

