
198

AN ALGORITHM FOR COMPACTION OF ALPHANUMERIC DATA

William D. SCHIEBER, George W. THOMAS: Central Library and
Documentation Branch, International Labour Office, Geneva, Switzerland

Description of a technique for compressing data to be placed in computer
auxiliary storage. The technique operates on the principle of taking two
alphabetic characters frequently used in combination and replacing them
with one unused special character code. Such une-for-two replacement
has enabled the ILO to achieve a rate of compression of 43.5% on a data
base of approximately 40,000 bibliographic records.

INTRODUCTION
This paper describes a technique for compacting alphanumeric data

of the type found in bibliographic records. The file used for experimenta­
tion is that of the Central Library and Documentation Branch of the
International Labour Office, Geneva, where approximately 40,000 bibli­
ographic records are maintained on line for searches done by the Library
for its clients. Work on the project was initiated in response to economic
pressure to conserve direct-access storage space taken by this particularly
large file. In studying the problem of how to effect compaction, several
alternatives were considered.

The first was a recursive bit-pattern recognition technique of the type
developed by DeMaine (1,2), which operates mdependently of the data
to be compressed. This approach was rejected because of the apparent
complexity of the coding and decoding algorithms, and also because early
analyses indicated that further development of the second type of approach
might ultimately yield higher compression ratios.

Compaction of Alphanumeric DatajSCHIEBER and THOMAS 199

The second type of approach involves the replacement, by shorter non­
data strings, of longer character strings known to exist with a high fre­
quency in the data. This technique is data dependent and requires an
analysis of what is to be encoded.

One such method is to separate words into their component parts:
prefixes, stems and suffixes; and to effect compression by replacing these
components with shorter codes. There have been several successful al­
gorithms for separating words into their components. Salton (3) has done
this in connection with his work on automatic indexing. Resnikoff and
Dolby (4,5) have also examined the problem of word analysis in English
for computational linguistics. Although this method appears to be viable
as the basis of a compaction scheme, it was here excluded because ILO
data was in several languages. Moreover, Dolby and Resnikoff's encoding
and decoding routines require programs that perform extensive word
analysis and dictionary look-up procedures that ILO was not in a position
to develop.

The actual requirements observed were twofold: that the analysis of
what strings were to be encoded be kept relatively simple, and that the
encoding algorithm must combine simplicity and speed presumably by
minimizing the amount of dictionary look-up required to encode and decode
the selected string.

One of the most straightforward examples of the use of this technique
is the work done by Snyderman and Hunt (6) that involves replacement
of two data characters by single unused computer codes. However, the
algorithm used by them does not base the selection of these two-character
pairs (called "digrams") on their frequency of occurrence in the data. The
technique described here is an attempt to improve and extend the concept
by encoding digrams on the basis of frequency. The possibility of encoding
longer character strings is also examined.

Three other related discussions of data compaction appear in papers by
Myers et al. (7) and by DeMaine and his colleagues (8,9).

THE COMPRESSION TECHNIQUE

The basic technique used to compact the data file specifies that the
most-frequently occurring digrams be replaced by single unused special­
character codes. On an eight-bit character machine of the type used, there
are a total of 256 possible character codes (bytes) . Of this total only a
small number are allocated to graphics (that is, characters which can be
reproduced by the computer's printer). In addition, not all of the graphics
provided for by the computer manufacturer appear in the user's data base.
Thus, of the total code set, a large portion may go unused. Characters that
are unallocated may be used to represent longer character strings. The
most elementary form of substitution is the replacement of specific digrams.
If these digrams can be selected on the basis of frequency, the compression
ratio will be better than if selection is done independent of frequency.

200 Journal of Library Automation Vol. 4/4 December, 1971

This requires a frequency count of all digrams appearing in the data, and
a subsequent ranking in order of decreasing frequency. Once the base
character set is defined, and the digrams eligible for replacement are
selected, the algorithm can be applied to any string of text.

The algorithm consists of two elements: encoding and decoding.

In encoding, the string to be encoded is examined from left to right.
The initial character is examined to determine if it is the first of any
encodable digram. If it is not, it is moved unchanged to the output area.
If it is a possible candidate, the following character is checked against a
table to verify whether or not this character pair can be replaced. If
replacement can be effected, the code representing the digram is moved
to the output area. If not, the algorithm then moves on to treat the second
character in precisely the same way as the first. The algorithm continues,
character-by-character until the entire string has been encoded. Following
is a step-by-step description of the element.

1) Load length of string into a counter.
2) Set pointer to first character in string.
3) Check to determine whether character pointed can occur in com­

bination. If character does not occur in combination, point to next
character and repeat step 3.

4) If character can occur in combination, check following character in
a table of valid combinations with the first character. If the digram
cannot be encoded, advance pointer to next character and return
to step 3.

5) If the digram is codable, move preceeding non-codable characters
(if any) to output area, followed by the internal storage code for
the digram.

6) Decrease the string length counter by one, advance pointer two
positions beyond current value and return to step 3.

In the following example assume that only three digrams are defined
as codable: AB, BE and DE. Assume also that the clear text to be encoded
is the six-character string ABCDEF. After encoding the coded string would
appear as:

AB C DE F

A horizontal line is used to represent a coded pair, a dot shows a single
(non-combined) character. The encoded string above is of length four.
Note that although BC was defined as an encodable digram, it did not
combine in the example above because the digram AB was already encoded
as a pair. The characters C and F do not combine, so they remain uncoded.

Note also that if the digram AB had not been defined as codable, the
resultant combination would have been different in this case:

A BC DE F

Compaction of Alphanumeric DatajSCHIEBER and THOMAS 201

The decoding algorithm serves to expand a compressed string so that
the record can be displayed or printed. As in the encoding routines, de­
coding of the string goes from left to right. Bytes in the source string are
examined one by one. If the code represents a single character, the print
code for that character is moved to the output string. If the code represents
a digram, the digram is moved to the output string. Decoding proceeds
byte-by-byte as follows until end of string is reached:

1) Load string length into counter.
2) Set pointer to first byte in record.
3) Test character.

If the code represents a single character, point to next source byte
and retest.

4) If the code represents a digram:
move all bytes (if any) up to the coded digram; and move in the
digram.

5) Increase the length value by one, point to next source byte and
continue with step 3.

APPLICATION OF THE TECHNIQUE

The algorithm, when used on the data base of approximately 40,000
records was found to yield 43.5% compaction. The file contains bibliographic
records of the type shown in Figure 1.

413.5 1970 70Al350
WARNER M
STONE M
THE DATA BANK SOCIETY- ORGANIZATIONS, COMPUTERS AND SOCIAL
FREEDOM.
LONDON, GEORGE ALLEN AND UNWIN, <1970>. 244 P. CHARTS.

/SOCIAL RESEARCH/ INTO THE POTENTIAL THRF.AT TO PRIVACY
AND FREEDOM f/HUMAN RIGHT/Sl THROUGH THF MISUSE OF /DATA
BANK/S - EXAMINES /COMPUTER/ BASED /INFORMATION ---­
~IEVAL/, THE IMPACT OF COMPUTER TECHNOlOGY ON
BRANCHES OF THE /PUBLIC ADMINISTRATION/ ANn /HEALTH
SERVICE/$ IN THE /USA/ ANO THE /UK/ ANO CO~CLUOES THAT,
IN ORDER TO PROTECT HUMAN DIGNITY, THE NEW POWERS MUST
BE KEPT TN CHF.CK. /BIBLIOGRAPHY/ PP. 236 TO 242 ANO
/REFERENCE/$.

ENGL

Fig. 1. Sample Record from Test File.

Each record contains a bibliographic segment as well as a brief abstract
containing descriptors placed between slashes for computer identification.
A large amount of blank space appears on the printed version of these
records; however, the uncoded machine readable copy does not contain
blanks, except between words and as filler characters in the few fields de­
fined as fixed-length. The average length of a record is 535 characters (10) .

202 Journal of Library Automation Vol. 4/4 December, 1971

The valid graphics appearing in the data are shown in Table 1, along
with the percentage of occurrence of each character throughout the entire
file.

Table 1. Single-Character Frequency

Freq. Freq. Freq. Freq. Freq.
Graphic % Graphic % Graphic % Graphic % Graphic %

b 14.87 I 4.32 H 1.58 0.63 8 0.31
E 7.63 c 3.48 1.52 w 0.50 (0.28
N 6.38 L 3.32

'
1.52 2 0.42) 0.28

I 6.01 D 2.32 1 1.08 K 0.42 + 0.21
A 6.01 u 2.21 v 0.91 3 0.40 J 0.15
(/J 5.86 p 2.12 B 0.87 5 0.37 X 0.14
T 5.50 M 2.02 9 0.83 7 0.37 z 0.13
R 4.82 F 1.61 y 0.82 0 0.35 Q 0.08

s 4.61 G 1.58 6 0.81 4 0.34
Misc.

0.01 Spec.

As might be expected, the blank (b) occurs most frequently in the data
because of its use as a word separator. The slash occurs more frequently
than is normal because of its special use as a descriptor delimiter. It should
also be noted that the data contains no lower-case characters. This is
advantageous to the algorithm because it considerably le~sens the total
number of possible digram combinations. As a result, a larger proportion
of the file is codable in the limited set chosen as codable pairs, and because
the absence of 26 graphics allows the inclusion of 26 additional coded pairs.

In the file used for compaction there are 58 valid graphics. Allowing
one character for special functions leaves 197 unallocated character codes
(of a total of 256 possible). A digram frequency analysis was performed
on the entire file and the digrams ranked in order of decreasing frequency.
From this list the first 197 digrams were selected as those which were
eligible for replacement by single-character codes. Table 2 shows these
"encodable" digrams arranged by lead character.

The algorithm was programmed in Assembler language for use on an
IBM 360/40 computer. The encoding element requires approximately 8,000
bytes of main storage; the decoding element requires approximately 2,000
bytes. In order to obtain data on the amount of computer time required
to encode and decode the file, the following tests were performed. To find
the encoding time, the file was loaded from tape to disk. The tape copy
of the file was uncoded, the disk copy compacted. Loading time for 41,839
records was 52 minutes and 51 seconds. The same tape to disk operation
without encoding took 28:08. The time difference (24:43) represents
encoding time for 41,839 records, or .035 seconds per record.

A decoding test was done by unloading the previously coded disk file
to tape. The time taken was 41:52, versus a time of 20:20 for unloading

Compaction of Alphanumeric DataiSCHIEBER and THOMAS 203

an uncompacted file. The time difference (21:32) represents decoding
time for 41,839 records, or .031 seconds per record.

The compaction ratio, as indicated above, was 43.5 per cent. For purposes
of comparison, the algorithm developed by Snyderman and Hunt (6) was
tested and found to yield a compaction ratio of 32.5% when applied to
the same data file.

Table 2. Most Frequently Occuring Digrams

Lead
Char.

A
B
c
D
E
F
G
H
I
L
M
N
0
p
R
s
T
u
v
w
y
b

1
I

)

Eligible Digrams

AB AC AD AG AI AL AM AN AP AR AS AT Ab
BL BO
CA CE CH CI CL CO CT CU Cb C.
DEDI DU Db Dl
EA EC ED EF EL EM EN EP ER ES ET EV Eb El
FE FIFO FR F~
GE GL GR Gb Gl
HA HE HI HO Hb
lA IC IE IL IN 10 IS IT IV
LA LE LI LL LO LU Us
MA ME MI MM MU MhS
NA NC ND NE NG NI NO NS NT Nla Nl
OC OD OF OG OL OM ON OP OR OU OV Ol,a
PA PE PL PO PR P.
RA RE RI RK RN RO RS RT RU RY Rb Rl
SA SE Sl SO SP SS ST SU ShS S, S.
TA TC TE TH TI TO TR TS TU TY Tb T I
UC UD UL UN UR US UT
VA VE VI
wo
YhS Yl
liSA hSB bC bD bE hSG lal laL bM bN bO hiP
l;6R bS hiT l;6U l;6W };6};6 l/J I l/J-. l/J (
19
1 A ;c JE 11 / L ; M JP JR ; s JT Jb 1,
,b
.l/J
-b
),

POSSIBLE EXTENSION OF THE ALGORITHM
Currently the compression technique encodes only pairs of characters.

There might be good reason to extend the technique to the encoding of
longer strings-provided a significantly higher compaction ratio could be

204 Journal of Library Automation Vol. 4/4 December, 1971

achieved without undue increase in processing time. One could consider
encoding trigrams, quadrigrams, and up to n-grams. The English wo~d
·'the", for example, may occur often enough in the data to make it worth
coding.

The arguments against encoding longer strings are several. Prime among
these is the difficulty of deciding what is to be encoded. Doing an analysis
of digrams is a relatively straightforward affair, whereas an analysis of
trigrams and longer strings is considerably more costly, because of the
fact that there are more combinations. Furthermore, if longer strings are
to be en'coded, the algorithms for encoding and decoding become more
complex and time-consuming to employ.

One approach to this type of extension is to take a particular type of
character string, namely a word, and to encode certain words which
appear frequently. A test of this technique was made to encode particular
words in the data: descriptors. All descriptors (about 1200 in number)
appear specially marked by slashes in the abstract field of the record.
Each descriptor (including the slashes) was replaced by a two-character
code. After replacement, the normal compaction algorithm was applied
to the record. A compaction ratio of 56.4% was obtained when encoding
a small sample of twenty records (10,777 characters).

The specific difficulty anticipated in this extension is the amount of
either processing time or storage space which the decoding routines would
require. If the look-up table for the actual descriptor values were to be
located on disk, the time to retrieve and decode each record might be rather
long. On the other hand, if the look-up table were to be in main storage at
the time of processing, its size might exclude the ability to do anything
else, particularly when on-line retrieval is done in an extremely limited
amount of main storage area. A partial solution to this problem might be
to keep the look-up tables for the most frequently occurring terms in main
storage and the others on disk. At present further analysis is being done
to determine the value of this approach.

CONCLUSIONS

The compaction algorithm performs relatively efficiently given the type
of data used in text data base (i.e. data without lower case alphabetics,
having a limited number of special characters, in primarily English text).
The times for decoding individual records (.031 sec/ record) indicate that
on a normal print or terminal display operation, no noticeable increase
in access time will be incurred. However several types of problems are
encountered when treating other kinds of data.

Since the algorithm works on the basis of replacing the most-frequently
occurring n-grams by single-byte codes, the compaction ratio is dependent
on the number of codes that can be "freed up" for n-gram representation.
The more codes that can be reallocated to n-grams, the better the com­
paction. Data which would pose complications to the algorithm-as cur­
rently defined-can be separated for discussion as follows:

Compaction of Alphanumeric DatajSCHIEBER and THOMAS 205

1) data containing both upper and lower case characters (as well as a
limited set of special characters), and 2) data which might possibly
contain a wide variety of little-used special graphics.

If lower-case characters are used, a possible way to encode data using
this technique is to harken back to the time-honored method of repre­
senting lower-case with upper-case codes, and upper-case characters by
their value, preceeded by a single shift code (e.g., #ACCESS for Access).
The shift code blank character digram would undoubtedly figure relatively
high on the frequency list, making it eligible as an encodable digram.

The second problem occurs when one attempts to compact data having
a large set of graphics. A good example of this is bibliographic data con­
taining a wide variety of little-used characters of the type now being
provided for in the MARC tapes (11) issued by the U. S. Library of
Congress (such as the Icelandic Thorn). Normally representation of these
graphics is done by allocating as many codes as required from the possible
256-code set. Since the compaction ratio is dependent on the number of
unallocated internal codes, a possible solution to this dilemma might be
to represent little-used graphics by multi-byte codes which would free
the codes for representation of frequently occurring n-grams.

Further, it is noticeable that the more homogeneous the data the higher
the compression ratio. This means that data all in one language will encode
better than data in many languages. There is, unfortunately, no ready
solution to this problem, given the constraints of this algorithm. In dealing
with heterogeneous data one must be prepared to accept a lower com­
pression factor.

Without doubt to be able to effect a savings of around 40% for storage
space is significant. The price for this ability is computer processing time,
and the more complex the encoding and decoding routines, the more time
is required. There is a calculable break-even point at which it becomes
economically more attractive to buy x amount of additional storage space
than to spend the equivalent cost on data compaction. Yet at the present
cost of direct-access storage, compaction may be a possible solution for
organizations with large data files.

REFERENCES

1. Marron, B. A.; DeMaine, P. A. D.: "Automatic Data Compression,"
Communications of the ACM, 10 (November 1967), 711-715.

2. DeMaine, P. A. D.; Kloss, K.; Marron, B. A.: The SOLID System
III: Alphanumeric Compression. (Washington, D. C.: National Bu­
reau of Standards, 1967) . (Technical Note 413).

3. Salton, G.: Automatic Information Organization and Retrieval (New
York: McGraw-Hill, 1968).

4. Resnikoff, H. L.; Dolby, J. L.: "The Nature of Affixing in Written
English," Mechanical Translation, 8 (March 1965), 84-89.

206 Journal of Library Automation Vol. 4/4 December, 1971

5. Resnikoff, H. L.; Dolby, J. L.: "The Nature of Affixing in Written
English," Mechanical Translation, 9 (June 1966), 23-33.

6. Snyderman, Martin; Hunt, Bernard: "The Myriad Virtues of Text
Compaction," Datamation (December 1, 1970), 36-40.

7. Myers, W.; Townsend, M.; Townsend, T.: "Data Compression by
Hardware or Software," Datamation (April 1966), 39-43.

8. DeMaine, P. A. D.; Kloss, K.; Marron, B. A.: The SOLID System II.
Numeric Compression. (Washington, D. C.: National Bureau of Stan­
dards, 1967). (Technical Note 413).

9. DeMaine, P. A. D.; Marron, B. A.: "The SOLID System I. A Method
for Organizing and Searching Files." In Schecter, G. (Ed.): Informa­
tion Retrieval-A Critical View. (Washington, D. C.: Thompson Book
Co., 1967).

10. Schieber, W.: ISIS (Integrated Scientific Information System; A Gen­
eral Description of an Approach to Computerized Bibliographical
Control). (Geneva: International Labour Office, 1971) .

11. Books: A MARC Format; Specification of Magnetic Tapes Containing
Monographic Catalog Records in the MARC II Format. (Washington,
D. C.: Library of Congress, Information Systems Office, 1970.)

