
File Structure for an On-Line
Catalog of One Million Titles

J. J. DIMSDALE: Department of Computing Science, University of
Alberta, Edmonton, Canada, and H. S. HEAPS: Department of Com­
puter Science, Sir George Williams University, Montreal, Canada.

37

A description is given of the file organization and design of an on-line cat­
alog suitable jo1· automation of a library of one million books. A method
of virtual hash addressing allows rapid search of the indexes to the cata­
log file. Storage of textual material in a compressed form allows consid­
erable reduction in storage costs.

INTRODUCTION

An integrated system for on-line library automation requires a number
of computer accessible files. It proves convenient to divide these files into
three principal groups, those required for the on-line catalog subsystem,
those required for the acquisition subsystem, and those required for the
on-line circulation subsystem. The present paper is concerned with the files
for the catalog subsystem. Files required for the circulation subsystem will
be discussed in a future paper.

The files for an on-line catalog system should contain all bibliographic
details normally present in a manual catalog, and the file should be orga­
nized to allow searches to be made with respect to title words, authors, and
Library of Congress (LC) call numbers. It may also be desired to search
on other bibliographic details, in which instance the appropriate files may
be added to those described in the present paper.

The file organization should be such as to support economic searching
with respect to questions in which terms are connected by the logic opera­
tions AND, OR, and NOT. It should also allow question terms to be con­
nected by operations of ADJACENCY and PRECEDENCE, and it should
allow question terms to be weighted and the search made with reference
to a specified threshold weight. It may be desirable for the file organiza­
tion to include a thesaurus that may be used either directly by the user or
by the search program to narrow, or broaden, the scope of the initial query
or to ensure standardization of the question vocabulary.

The file organization and search strategy should ensure that the user of
the on-line catalog system receive an acceptable response time to his

38 Journal of Library Automation Vol. 6/ 1 March 1973

queries, although it is likely that some of the operations required by the
circulation system will be given a higher priority. Thus the integrated sys­
tem must time-share between search queries, circulation transactions, and
other tasks that originate from a number of separate terminals or from
batch input. Such tasks might arise from acquisitions, and from update
and maintenance of the on-line catalog. The system should be a special
purpose time-sharing system such as the Time Sharing Chemical Informa­
tion Retrieval System described by Lefkovitz and Powers and by Wein­
berg.1· 2 In this system the queries time-share disk storage as well as the
central processor.

Since an on-line catalog is a large file, and hence expensive to store in
computer accessible form, it is desirable to store it in as compact a form
as possible. For example, a catalog file for one million titles is likely to in­
volve between 2 x lOS and 5 X 108 alphanumeric characters. If stored char­
acter by character the required storage capacity would be equivalent to that
supplied by from seven to sixteen IBM 2316 disk packs. It is also impor­
tant to design the frequently accessed files so as to minimize the number
of disk, or data cell, accesses required to process each query.

The files described in the present paper include ones stored in com­
pressed form and organized for rapid access.

Throughout the present paper the term title is used in a general sense.
It may include periodical titles as well as book titles. However, it is sup­
posed that frequently changing information, such as periodical volume
ranges, will be stored as part of the circulation subsystem rather than the
catalog subsystem.

OVERALL FILE ORGANIZATION

The complete bibliographic entries of the catalog may be stored in a
serial (sequential) file so that any record may readily be read and dis­
played in its entirety. However, as indicated by Curtice, use of an inverted
file is to be preferred for purposes of searching.3 An alternative to the
simple serial file is one organized in the form of a multiple threaded
list (multilist) in which all records that contain a particular key are linked
together by pointers within the records themselves. The first record in each
list is pointed to by an entry in a key directory as described by Lefkovitz,
Holbrook, Dodd, and Rettenmayer.4-7

For very small collections of documents Divett and Burnaugh have at­
tempted to organize on-line catalogs by use of ring structured variations
of the multilist technique.8• 9 Neither file organization is feasible for a
collection of a million documents because of the long length of the
threads involved. Many disk accesses would be needed in order to retrieve
all elements of a list, and hence there would be a very slow response to
queries. The cellular multilist structure proposed by Lefkovitz and Powers,
or the cellular serial structure proposed by Lefkovitz, may well prove to be
a viable alternative to the organization proposed in the present paper.10• 11

File Structure for an On-Line Catalog j DIMSDALE 39

However, as indicated by Lefkovitz, the inverted organization provides
shorter initial, and successive, response times in answer to queries.12

In the present paper it is supposed that the on-line catalog file consists
of both a serial file of complete bibliographic entries and an inverted file
organized with respect to search keys such as title words, subject terms, au­
thor names, and call numbers. Such a two-level structure is often assumed
and has been termed a "combined file" by Warheit who concluded it to be
superior to either a single serial file or a threaded list organization.13- 17

The file structure described in the present paper uses indexes based on
the virtual scatter table as described by Morris and Murray, the scatter in~
dex table discussed by Morris, and the bucket as treated by Buchholz.18- 20

The attractiveness of a similar structure for use in the Ohio College Li­
brary Center has been analyzed by Long, et aP1 The basic elements of the
file organization are shown in Figure 1. It is supposed that the access keys
are title words, but a similar file structure is used for access with respect to
keys of other types.

KEY HASHING HASH
{eg. TITLE WORD)_. FUNCTION-+ TABLE

FILE

Fig. 1. Overall File Organization

Any key may be operated on by a hashing function which transforms it
into a pointer to an entry in a hash table file. This file contains pointers to
both a dictionary file of title words and an inverted index which is stored
in a compressed form. Entries within the compressed inverted index serve
as pointers to the catalog file of complete bibliographic entries. Terms,
such as title words, within the catalog file are coded to allow a compressed
form of storage. The codes used in the compressed catalog file serve as
pointers to the uncoded terms stored in the dictionary file.

There would be a separate hashing function, hash table file, dictionary
file, and compressed inverted file for use with each different type of key.
However, there is only one compressed catalog file.

For a search scheme that allows use of a thesaurus of synonyms, narrow­
er terms, broader terms, and so forth, a thesaurus file may be added (Fig­
me 2).

The files must be organized to allow for ease of updating. As further
bibliographic entries are added it is necessary to add additional pointers
from the inverted index. Also, whenever a new key occurs in a bibliograph­
ic entry it must be added to the dictionary, assigned a code for storage in

40 Journal of Library Automation Vol. 6/1 March 1973

the compressed catalog file, and entered into the compressed inverted in­
dex.

KEY HASHING
(eg. TITLE WORD) - FUNCTION

Fig. 2. File Organization with Inclusion of a Thesaur·us

STRUCTURE OF THE HASH TABLE FILE

In order to locate the set of inverted index pointers that corresponds to
a given search key K, the key is first operated on by a hashing function
that transforms it into a bit string of length v bits. Each such bit string is
said to represent a virtual hash address, and is regarded as the concatena­
tion of two substrings of length r and v-r bits. The two substrings are re­
spectively said to constitute the major and the minor M(K) of the virtual
hash address. The major is further divided into two bit strings B(K) and
I(K) that define a bucket number B(K) of a bucket f3(K), and an index
number I(K) of an entry within the bucket. The major that represents the
pair of numbers B (K), I (K) is said to constitute a real hash address.

The hash table file is divided into portions, or buckets, of equal length.
Each bucket is further divided into an index section, a content section, and
a counter section (Figure 3) . The index sections of all buckets have the
same length. Similarly, all content sections are of equal length, and so are
all counter sections.

As the hash table is created, entries are added sequentially into the con­
tent section so that any unfilled portion is at the end. In contrast, the index
section of any bucket may contain unfilled entries at random positions and
hence constitutes a scatter table.

The hash table :file is created as follows. The various keys are trans­
formed by the hashing function into bit strings B (K), I (K), M (K). In
the bucket f3 (K) of number B (K) an entry as described below is added
to the content section, and the vacancy pointer within the counter section
is incremented to point to the beginning of the unfilled portion of the
content section. The I(K)th entry number in the index section is then set
to point to the position of the entry added to the content section. The en­
try placed in the content section includes the minor M (K) and a diction­
ary pointer to where the key is placed in the dictionary file as well as a
pointer to an entry in the compressed inverted index.

If there has previously occurred a bit string B(K1), I(K1), Mr(K1) in
which B(L) = B(K), I(K1) = I(K), Mr(K1) # M(K) then no change is

File Structure for an On-Line Catalog/DIM5DALE 41

B(K), I(K), M(K)
HASH TABLE FILE:

COUNTER SECTION:

COUNTER
SECTION

NUMBER NUMBER NUMBER
OCCUPIED OVERFLOWS FROM OVERFLOWS INTO

Fig. 3. Bucket of the Hash Table File

made to the I (K) th entry in the bucket f3 (K) or to the minor M (K1) in the
content section. Instead, the chain pointer is set to point to the location of a
new entry that is added to the content section. In this new entry the minor
is set to Mt(K) and the dictionary pointer is set to indicate where the new
key is placed in the dictionary file. There is said to have resulted a collision
at the real hash address B(K), I(K).

If there has previously occurred a bit string B (K1), I (Kt) , M (K1) in
which B(K1) = B(K), I(K1) = I(K), M(Kt) = Mt(K), where K1 =F K, then
the collision bit that precedes M(K.,_) is set to 1. and a further content entry
containing M (K) is chained from the entry that contains M (K1) . There
is said to have OCCUlTed a collision at the virtual hash address B(K), I(K),
M(K).

The last three entries included in the counter section shown in Figure
3 are optional but are useful for monitoring the performance of the
hashing function with respect to bucket overflows and so forth.

A bucket becomes full when there is no remaining unfilled space in its
content section. If a further chain pointer is required from a content en­
try, its preceding overflow bit Qc is set to 1 to indicate that the pointer is
to another bucket. Likewise, if a further entry is required in the index
section its preceding overflow bit Qr is set to 1 to indicate that it refers to
an entry within another bucket. The bucket is then said to have over­
flowed. Methods of handling bucket overflow, and choice of the new
bucket, are discussed in a subsequent section.

It should be noted that use of a hash table as described above retains
most of the advantages of the usual scatter index method in which the in-

42 Journal of Library Automation Vol. 6/1 March 1973

dex entries and content entries are stored in two separate files. It has the
further important advantage that in most instances a single disk access is
sufficient to locate both the index entry and the corresponding content en­
try.

As noted by Buchholz and Reising~ if it is known that certain keys are
likely to appear with high frequency in search queries then it is advanta­
geous to enter them at the start of creation of the hash file. 22

•
23 They will

then tend to appear near the beginnings of the content entry chains and
hence require little CPU time for their subsequent location. Furthermore,
they will tend to appear in the same bucket as their corresponding index
entries, and hence their location will usually require only a single disk ac­
cess.

NUMBER OF BITS FOR VIRTUAL HASH ADDRESS

Suppose the hashing function is chosen so that the majors of the trans­
formed keys are uniformly distributed among the R slots available for
real hash addresses B,I. If there are N keys then a = N / R may be termed
the load factor. It is the average number of keys that are transformed into
any given real hash address.

The probability that any given real hash address corresponds to k keys
is given by M urra y24 as
(I) Pk = e-a akjkl
Hence, for any given real address the probability of a collision occurring
is

N
(2) C = ~ Pk = 1 - Po - P1 = 1 - (1 + a)e-a.

k= 2

If a collision occurs at a particular real hash address, the expected length
of the required chain within the content section is

N
(3) L = ~ kP~r/C

k=2
N

= (1/ C) (~ kPk - Pd
k:O = (l j C) (a - ae-a)

_ a (e" - 1)
ea.- 1 - a

It may be noted that if the load factor a is equal to 1 then L = 2.43.
If all the transformed keys are distributed uniformly among the V pos­

sible virtual addresses B, I, M then the expected total number of collisions
at virtual addresses is given by Murray25 as
(4) p = N2/ 2V
provided V" N. The expected relative frequency of collisions at virtual
addresses is therefore
(5) f = N/ 2V.

File Structure for an On-Line Catalogj DlMSDALE 43

It proves convenient to regard N, f, and a as basic parameters in terms
of which may be determined the number r of bits required in the major1

and the number v of bits required in the virtual hash addresses.
The value of r must be at least as large as lo~R = lo~(N/a), and

hence r may be chosen according to the formula
(6) r = r log2 (N/ a)
where r means "the smallest integer greater than or equal to." The value
of v must be at least as large as
(7) v = r lo~V = r lo~ (N/2£).
If N and f have the form N = 2n and f = 2-'Y then v may be chosen according
to the formula
(8) v = n + 'Y - 1
and the number of bits required for the minor is
(9) m = v- r.

CHOICE OF BUCKET CAPACITY

With an 8-bit byte-oriented computer, such as the IBM 360, it proves
convenient to use 8 bits of storage for each entry number plus overflow
bit within the index section. If a value of zero is used to indicate an un­
used index entry there remain up to 127 possible values for entry numbers.
Thus the number c of entries in the content section must be less than or
equal to 127.

Suppose there are b slots for index entries in each bucket. The total
number of index entries in the entire file is R. It follows from the results
of Schay and Spruth,26 Tainter,27 and Heising28 that the probability P(b, c)
of overflow of any bucket is given by

oo c-<>b

(10) P (b, c) = ~ (ab)k -·
k = c + 1 kl

For selected values of b, Beyer's tables of the Poisson distribution have
been used to compute P (b, c) and to determine the largest value of c for
which P(b, c)L O.OI.29 The results are shown in Table 1 for the in­
stance in which a = 1. A similar table has been computed by Buchholz3° for
the instance in which c = b and a ranges from 0.1 to 1.2.

As is apparent from Table 1, an increase in the value of b allows use of
a smaller ratio c/ b and hence permits more economical use of storage.
With b = 64 the allowed value of c/b is 1.33 and hence c may be chosen
equal to 85.

The reduction in access time that results from structuring the file so that
each bucket contains both index and content entries is, of course, effected
at the expense of additional storage costs. For example, if cjb = 1.33 then
the space allocated for storage of content entries is 33 percent greater than
if content entries are stored in a separate file. Relaxation of the condition
P(b,c)..:::: 0.01 allows a reduction in cj b, but the increased number of buck­
et overflows will cause additional disk accesses to be required.

44 Journal of Library Automation Vol. 6/ 1 March 1973

Table 1. Values of b, c, and cj b for which P(b,c~O.Ol when a= 1.

b
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
60

100

c
5
6
8

10
11
13
14-
15
17
18
19
20
22
23
24
25
27
28
29
30
80

125

TREATMENT OF BUCKET OVERFLOWS

c! b
5.00
3.00
2.66
2.50
2.20
2.17
2.00
1.88
1.89
1.80
1.73
1.67
1.69
1.64
1.60
1.56
1.59
1.55
1.53
1.50
1.33
1.25

When a new key is found to map into a bucket whose content section is
full then some means must be found to provide space in some other buck­
et. The particular procedure that should be used depends on the extent to
which the entire set of buckets contain unfilled portions.

Suppose that many buckets are almost full and that the number c of al­
lowed content entries is less than 127. The entire hash file may then be ex­
panded with the same index sections but with longer content sections.

If many buckets are almost full and c = 127 then the entire file may be
expanded in such manner that each bucket is replaced by a pair of buckets
that contain the same number b of allowable index entries, but whose
number Ct of allowable content entries is chosen to ensure that P(b,ct)
L 0.01. Such doubling of buckets also doubles the number of index entries
but it does not double the storage required for the entire file. Each key K
that corresponds to an entry in the original bucket is associated with an
entry in the first, or second, of the new buckets according as the leading bit
of either its index address I (K) or its minor M:(K) is equal to 0 or 1. The
effect is to shift one bit from I(K) or M(K) into the bucket address
B (K). This method is based on a suggestion of Morris. 31 ·

Suppose that few buckets are almost full. Then a suitable means of de­
termination of an unfilled bucket for storage of the minor is through use
of some overflow algorithm that determines a sequence of bucket numbers
Bo (K) , Bt (K) , B2 (K), etc., corresponding to any given full bucket {:3o (K) .
Suppose there are nb buckets. A quadratic residue algorithm
(11) Bi (K) = [B0 (K) + aj + bj2] mod nb

File Structure for an On-Line Catalog/ DIMSDALE 45

has been considered by Maurer and by Bell for use with in-core hash ta­
bles, but it suffers from the disadvantage that the existence of a full buck­
et /)o (K) will divert entries into the particular buckets /31 (K), /32 (K), etc.
and hence cause them to fill more rapidly than other buckets which may
contain fewer entries.82• 33

It is believed that a more desirable form of the quadratic residue al­
gorithm is

(12) Bj (K) = { B0 (K) + f1 [I (K)] } mod nb
where fl is a suitably chosen function. Letting B, (K) depend, through
fs, on both j and I (K), instead of on j alone, allows reduction of the
tendency to fill a particular set of buckets.

To prevent a tendency to overflow particular buckets it is also desirable
for the overflow algorithm to produce bucket numbers that are uniformly
distributed among all possible bucket numbers. Among the more promising
forms to be chosen for the fl [I (K)] are the following
(13a) fj [I (K)] = I ' (K) j
where j = 1, 2, ... , nb -1, and l'(K) denotes I(K) if I(K) is odd, but de­
notes I (K) + 1 if I (K) is even. Since nb is a power of 2 such choice of
I'(K) ensures that I'(K) and nb have no common factors, and hence that
Bi (K) steps through the sequence /3o (K), /31 (K), etc. covering every buck­
et in the file.
(13b) fj [I (K)] = I ' (K) j2

where j = 1, 2, ... , r \ / n-1, and r means "the least integer greater than or
equal to."
(13c) fdl (K)] = Rdi ' (K)]
where j = 1, 2, ... , Db, and RJ[l'(K)] denotes a number output by a pseu­
dorandom number generator of the form suggested by MorrisB4 with an ini­
tial input of I' (K) instead of 1.

It may be remarked that use of Equation 13a requires the least number
of machine instructions, and the least CPU time per step, but it has a
strong tendency to cluster the f31(K) immediately after the /3o(K) and
hence it is likely to be the least effective of the three methods. Use of
Equation 13b produces less clustering, but the sequence does not include
all buckets of the file. Use of Equation 13c requires the largest number of
instructions and CPU time per step, but the f3J(K) are less likely to cluster
and they are uniformly distributed among all possible buckets. Thus
Equation 13c produces shorter chains of overflow buckets and hence re­
quires fewer disk accesses.

If a new key K maps into a full bucket /3o (K) then the following pro­
cedure is used to determine the bucket into which the minor of K is to be
inserted:
(i) The chain of pointers from the I (K) th entry of the bucket /)o (K)
is followed, possibly through overflow buckets given by Equation 12, in or-

46 Journal of Library Automation Vol. 6/1 March 1973

der to locate the terminal entry of the chain. Suppose this terminal entry
is within a bucket /3J (K) .
(ii) If there is available space in bucket /3J(K) then the minor Mr(K) is
entered and chained as described previously.
(iii) If bucket /3J (K) is full, but there is space in /3J + 1 (K), then the
minor M (K) is entered into /3J + 1 (K) and chained as described previous­
ly.
(iv) If buckets f3J (K) and /3j + 1 (K) are both full, and bucket /3J + 1 (K)
contains at least one nonempty index entry I (K') whose chained content
entries are all contained within /3J + 1 (K), then the minor M (K) is stored
according to the following displacement algorithm:

The terminal member of the chain from I (K') is displaced to an over­
flow bucket /3r (K') determined by use of Equation 12, except that if
both /3r(K') and /3r + 1(K') are full then a further bucket is determined
by use of the displacement algorithm. The minor M (K) is substituted
for the displaced entry in bucket /3J + 1(K) and is chained appropriately.

(v) If application of Step (iv) leads to a bucket /3J + 1 (K), or /3r + 1 (K),
that contains no nonempty index entry whose chained content entries are
all contained within it, then the entire hash file must be expanded by use
of one of the procedures described at the beginning of the present section.

It should be emphasized that, although Step (iv) is necessary for com­
pleteness, the probability of its use is very low. With a probability of less
than 0.01 for a bucket overflow, the probability of use of Step (iv) is less
than (0.01) 3•

SEARCH PHASE AND PROBLEM OF MISMATCH

In the previous sections the structure of the hash index file has been dis­
cussed with emphasis on details of its creation and update. During search
of the catalog files by use of the inverted index, each search key is pro­
cessed by the following search alogorithm:
Step 1: The search key K is transformed by the hashing function into a

virtual hash address B(K), I(K), M(K).
Step 2: The bucket /3(K) is read into core.
Step 3: The index entry specified by I(K) is examined. If it is empty then

the search key is not present in the data base. If it is not empty
then Step 4 is performed.

Step 4: The overflow bit of the index entry specified by I(K) is exam­
ined. If it is equal to 1 then Step 5 is performed. If it is equal to
0 then Step 6 is performed.

Step 5: The overflow algorithm is used to determine the address of there­
quired overflow bucket which is then read into core, and Step 6 is
executed.

Step 6: The minor of each entry in the chain of content entries is com-

File Structure for an On-Line Catalog/DIMSDALE 47

pared to the minor of the search key's virtual hash address until
either a match is found or the chain is exhausted. Whenever the
chain leads to an overflow bucket then Step 5 is performed.

Step 7: If a match is found for M (K) then the collision bit of the entry
is examined. If it is equal to 0 then Step 9 is performed. If it is
equal to 1 then Step 8 is performed.

Step 8: The dictionary entry that corresponds to each content entry in the
virtual address collision is read into core and compared to the
search key K. If no match is found then the search key is not pres­
ent in the index.

Step 9: This step is included because there is a small probability that a
misspelled search key, or one not present in the hash file, may be
transformed into the same virtual address as some key already in­
cluded in the file. The step consists of reading the corresponding
dictionary entry into core and comparing it with the search key.
For reasons discussed later in the present section it is desirable to
omit this step.

It should be noted that in most instances the search algorithm will not
require execution of Steps 5 and 8. In fact, with the hash index files de­
signed as described in the previous sections, the probability of execution
of Step 5 is about 0.01 and the probability of execution of Step 8 is about
2-16• Consequently, if Step 9 is also omitted the number of disk accesses re­
quired to find the index entry corresponding to a search key is approxi­
mately l.Ol.

The mismatch problem, which gives rise to Step 9 of the search al­
gorithm, is less serious than might be expected. Suppose the hash function
distributes the transformed keys uniformly over all hash addresses. The
probability that a new, or misspelled, key maps into an existing entry is
given by
(14) Pc = NjV
The probability that a search leads to a mismatch is therefore
(15) P m = P .N j V
where Ps is the probability that the search key is misspelled or not in the
hash table. Thus, for a hash table of N = 216= 65,536 title words and V = 28\

an assumption of Ps = 0.1leads to Pm = 3 X 10-6•

Because Pm is extremely small, and because each execution of Step 9 re­
quires up to two disk accesses, it is desirable to omit this step. If experience
shows that particular new or misspelled search keys occur frequently, and
cause mismatches, they may themselves be entered into the hash index file.
In fact, some degree of automatic spelling correction may be provided if
some common misspellings are included in the hash files and chained to the
content entries that correspond to the correctly spelled keys. Correct, but
alternative, spellings of search keys may also be treated in the same man­
ner.

48 Journal of Library Automation Vol. 6/1 March 1973

SIZE OF HASH FILE FOR TITLE WORDS

Suppose the docwnent collection contains T different titles that comprise
a total of W words of which there are N different words. Let W = W /T de­
note the average number of words in each title. Reid and Heaps85 have re­
ported word counts on the 57,800 titles included on the MARC tapes be­
tween March 1969 and May 1970 and have noted that
(16) w = 5.5
(17) log10N = 0.6 log1oW + 1.2.
Examination of other data bases has led to the conclusion that log N is
likely to be a linear function of log W over the range 0 L W L 106

•

For a library of one million titles the Equations 16 and 17 may there­
fore be used to predict that when T = 106 then
(18) W :::: 5.5 X 106 and N = 1.8 X 105

•

It follows from Equation 6 that if a = 1 the number of bits required in the
major is
(19) r = 18.
According to Equation 7, in order to reduce the frequency f of collisions
at virtual addresses to 2-16 the number of bits required in the entire vir­
tual address is
(20) v = r [lo~ (1.8 x 105 + 16 - 1] = 33.
Consequently, the number of bits in the minor is
(21) m = v - r = 15.
However, with such a choice of r then R = 218 and the value of the load
factor is, in fact,
(22) a = N/R = 0.7

It follows from Equation 4 that the expected total number p of colli­
sions at virtual addresses is equal to approximately 2. It may be further
noted that Murray36 has derived the following approximation for the prob­
ability that the number of collisions at virtual hash addresses lies within
the range a to d:

d

(23) P (a, d) = ~ e-"P p1/il (0 ~i L U~ N)
i= a

where L means "greatest integer less than or equal to."
When p = 2 the equation gives a value of 0.9998 for the probability that
the total number of collisions lies between 0 and 8. Thus the above choice
of r, v, and m leads to a title word hash table file with excellent virtual ad­
dress collision properties.

Use of Equation 10 with b = 64 and a= 0.7, leads to the result that the
probability of bucket overflow may be reduced to 0.01 by choosing c = 62.

In view of the above value of m it proves convenient to allocate 10 bytes
of storage for each content entry. Each entry consists of a 2-byte portion
to contain the 15-bit minor preceded by a collision bit, a 1-byte portion to

File Structure for an On-Line Catalogj DIMSDALE 49

contain a 7-bit chain pointer preceded by an overflow bit, a 3-byte diction­
ary pointer, and a 4-byte pointer to an inverted index. The 64 one-byte
index entries, the 62 ten-byte content entries, and 4 one-byte counters, con­
stitute buckets of length 688 bytes. The entire hash file consists of R en­
tries, and hence R/b = 212 buckets. Its storage requirement is therefore for
212X 688 = 2.82 X 106 bytes.

It may be remarked that nine 688-byte buckets may be stored unblocked
in one track of an IBM 2316 disk pack, and that the entire hash file occu­
pies 11.38 percent of the disk pack. When the disk and channel are idle the
average time to access such a bucket is the sum of the average seek time,
the average rotational delay, and the record transmission time. For storage
on an IBM 2314 disk drive the average bucket access time is therefore 60 +
12.5 + 2.8 = 75.3 milliseconds. The average access time for a sequence of
accesses could be reduced by suitable scheduling.

SIZE OF HASH FILE FOR LC CALL NUMBERS
For a library of one million titles the number N of call numbers is 106•

If a = 1 and f = .2-16 it follows from Equations 6, 7, 9, and 4 that
(24) r = 20, v = 35, m = 15, p = 16.
With such a choice of r the load factor is approximately equal to 1. Equa~
tion 23 gives a probability of 0.9998 that the total number of virtual ad­
dress collisions lies between 0 and 34. Use of Equation 10 with b = 64 and
a = 1.0 shows that the probability of bucket overflow may be reduced to 0.01
by choosing c = 85.

The content entries for LC call numbers may be arranged as for title
words except that the 4-byte pointer to an inverted index is replaced by a
3-byte pointer to the compressed catalog file. The bucket length is there­
fore 64 + 85 x 9 + 4 = 833 bytes.

The storage requirement for the hash file is (220/ 26) x 833 = 13.65 x 106

bytes which may be stored in 2184 tracks, or 54.6 percent, of an IBM 2.316
disk pack. The average time to access a bucket is 60 + 12.5 + 3.3 = 75.8
milliseconds.

SIZE OF HASH FILE FOR AUTHOR NAMES
In the present section the term "author" will be used to include personal

names, corporate names, editors, compilers, composers, translators, and so
forth. It will be assumed that for personal names only surnames are en­
tered into the author dictionary. A search query that includes specification
of authors with initials is first processed as if initials were omitted, and
the resulting retrieved catalog entries are then scanned sequentially to elim­
inate any entries whose authors do not have the required initials. It will
also be supposed that each word of a corporate name is entered separately
into the author dictionary, and that the inverted index contains an entry
for each term.

In the absence of reliable statistics regarding the distributions of author

50 Journal of Library Automation Vol. 6/1 March 1973

surnames, words within corporate names, and so forth, the following as~
sumptions have been made in order to estimate tile size of the author dic­
tionary and hash file for a library of one million titles:

(i) Personal author names contain 2 x 105 different surnames of average
length 7 characters.

(ii) The corporate author names include 4 X 104 different words of
average length 6 characters.

(iii) The author names include 1.6 X 104 different acronyms such as IBM,
ASLIB, and so forth; their average length is 4 characters.

It is thus supposed that N = 2.56 X 105 entries are required in the author
hash files.

Calculations similar to those of the previous section show that
(25) r = 18, v = 33, m = 15, p = 4, a = 1.0.
Equation 23 gives a probability of 0.9999 that the total number of virtual
address collisions lies between 0 and 13. The probability of bucket over­
flow may be reduced to 0.01 by choosing c = 85. Content entries of 10 bytes
may be arranged as previously described for title words. Hence each buck­
et requires 918 bytes of storage.

The storage requirement for the hash file is (218/ 26) X 918 = 3.76 X 106

bytes which may be stored in 586 tracks, or 14.6 percent, of an IBM 2316
disk pack. The average time to access a bucket is 76.1 milliseconds.

STRUCTURE OF DICTIONARY FILES

The structure of the dictionary files for title words and author names
is as described by Thiel and Heaps.87• 38 Each dictionary file contains up
to 128 directories each of which points to up to 128 term strings that may
each contain space for storage of 128 terms of equal length. Thus each
dictionary file contains up to 214 different terms. The dictionary pointers
in the hash files are essentially the codes stored instead of alphanumeric
terms in the catalog file.

The most frequent 127 title words are assigned dictionary pointers of
the form
(26) 10000000 10000000 1XXXXXXX

PT
and do not have corresponding entries in the inverted index file. The last
byte forms the code used to represent the title word within the compressed
catalog file.

The next most frequent 16,384 title words are assigned dictionary point­
ers of the form
(27) 00000000 1XXXXXXX lXXXXXXX
or

(28) 10000000 OXXXXXXX 1XXXXXXX

File Structure for an On-Line Catalog/ D!MSDALE 51

according as there is, or is not, a corresponding entry in the inverted index.
The last 2 bytes are used as codes in the compressed catalog file.

The remaining title words are assigned dictionary pointers of the form
(29) OXXXXXXX OXXXXXXX lXXXXXXX

...____~ --...------'

p~ p~ PT
They all have corresponding entries in the inverted index file, and the 3
bytes are used as codes in the catalog file.

The reason that terms coded in the form 26 or 28 do not have corre­
sponding entries in the inverted index file is that very frequently occurring
terms form very inefficient search keys. Also, previous results suggest that
omission of corresponding entries in the inverted index allows its size to
be reduced by about 50 percent.39

•
40

The codes of type PT, (Ps,PT) , and (Pn,Ps,PT) are used respectively for
approximately 50 percent, 45 percent, and 5 percent of the title words. The
average length of the coded title words in the compressed catalog file is
therefore 1.55 bytes.

Associated with each dictionary file there is a directory of length 512
bytes whose entries point to the beginnings of term strings within the dic­
tionary file and also indicate the lengths of the terms. Within the hash ta­
ble file a dictionary pointer of the form Po, P s, PT points to the PT th
term of the Ps th term string in the dictionary associated with the Po th
directory. There is a single directory associated with each set of pointers
of type PT and Ps, PT.

The average length of the 1.8 X 105 different title words is 7.6 characters,
and hence the entire set of term strings requires 1.8 X 105 X 7.6 = 1.37 x 106

bytes for storage of title words. Since twelve directories occupying 12 x 512
= 6144 bytes will be required, and since some term strings will contain un­
filled portions, the storage requirement of the dictionary file will be slight­
ly larger. If the title word dictionary is stored on disk in 1,000 byte rec­
ords then the storage requirement is 238 tracks, or 5.95 percent, of an
IBM 2316 disk pack.

The assumptions made previously regarding author names imply an au­
thor dictionary size of 1.70 X 106 bytes and sixteen directories whose total
storage requirements are 16 X 512 = 8,192 bytes. Using an IBM: 2316 disk
pack the storage requirement is for 286 tracks, or 7.15 percent.

On completion of a search through use of the inverted index .file there
results a set of sequence numbers that indicate the position of the relevant
items in the compressed catalog file. Before such items are displayed to a
user of the system, each term must be decoded through access to the direc­
tory and dictionary to which it points.

The time required to decode a catalog item depends on how the direc­
tories and dictionaries are partitioned between disk and core memory. Sev­
eral partitioning schemes for title words have been analysed, and the re­
sults are summarized in Table 2.

52 Journal of Library Automation Vol. 6/1 March 1973

In the calculations used to obtain Table 2 it is assumed that title words
occur with the frequencies listed by Kucera and Francis.41 It is supposed
that both the directory and term strings corresponding to codes of form
PT are stored in a single physical record, that every other directory is con­
tained wholly within a physical record, and that each dictionary term may
be located by a single access to a term string. Any required CPU time is re­
garded as insignificant compared to the time needed for file accesses.

From the results shown in Table 2 it appears that the best partition be­
tween core and disk is probably that which gives an average decode time
of 42 milliseconds while requiring a dedicated 1501 bytes of core memory.
This results when core is used to store both the directories and term strings
for terms that correspond to pointers of type PT, and the directories only
for terms that correspond to pointers of type Ps,PT.

COMPRESSED CATALOG FILE

Since the title word codes stored in the compressed catalog file have an
average length of 1.55 bytes, whereas uncoded title words and their delim­
iting spaces have an average length of 6.5 characters, the compressed title
fields occupy only 24 percent of the storage required for uncompressed
words. Uncoded author names and their delimiting spaces have an average
length of 7.6 characters and are coded to occupy not more than 3 bytes;
hence coding of author names effects an average compression factQr of
less than 3;7.6 = 40 percent. For LC call numbers the compression factor
is less than 30 percent. Clearly, subject headings, publisher names, and
series statements may be coded with even more effective compression fac­
tors.

The saving in space through compression of the catalog file may be
translated into a cost saving as follows. If there are an average of 5.5
words in each title then one million titles include 5.5 X 106 title words and
delimiting spaces which, if stored in the catalog file in uncoded form,
would require 3.63 X 107 bytes.42 When stored in coded form the require­
ment is for 8.54 X 106 bytes. Charges for disk space vary considerably with
different computing facilities. At the University of Alberta users of the
IBM 360 Model 67 are charged a monthly rate of $.50 for each 4,096 bytes
of disk storage. Thus, for title words alone the advantage of storing the
catalog file in compressed form is to allow the monthly storage cost to be
reduced from $4,440 to $950.

CONCLUDING REMARKS

The results reported in the present paper indicate that a satisfactory
structure for a catalog file may be designed to use the concept of virtual
hash addressing and storage of terms in compressed form. Access and de­
coding times may be reduced to acceptable amounts.

It may prove advantageous to arrange the items in the catalog file in the
order of their call numbers. This will tend to reduce the number of disk

File Structure for an On-Line Catalog/ DIMSDALE 53

Table 2. Average Time to Decode a Title Word of the Compressed Catalog
File.

Core Resident
Directories Ter-m String

None
Pr

PT, (Ps, PT)
All

PT, (Ps, PT)
All

None
Pr
Pr
p.,.

PT, (Ps, Pr) 0

Pr, (Ps, Pr)0

Average
Number
Accesses

1.50
1.01
0.55
0.50
0.49
0.44

(Ps, Pr) 0 signifies the 128 most frequent of the codes Ps, PT

Average
Decode Time
(milliseconds)

ll5
77
42
39
38
34

Dedicated
Core Memory

(bytes)
0

989
1501
7133
2474
8106

accesses needed to retrieve catalog items in response to queries since it will
tend to group relevant items. However, the benefits should be weighed
against the additional expense required to maintain and update the or­
dered file.

The present paper has omitted discussion of the form of the query lan­
guage or the search algorithm that operates on the elements of the invert­
ed index. A formal definition of one form of query language has been
discussed by Dimsdale.48

Details of a search algorithm and structure of a compressed form of in­
verted index have been discussed by Thiel and Heaps.44 It may be noted
that each content entry in the hash table file has 4 bytes reserved for a
pointer to a bit string of the inverted index. Whenever the bit string is
less than 4 bytes in length it is stored in the content section and no pointer
is required. Storage of such bit strings within the content entries signifi­
cantly reduces the storage requirements of the inverted index and also re­
duces the number of required disk accesses in the search phase of the pro­
gram.

ACKNOWLEDGMENT

The authors wish to express their appreciation to the National Research
Council of Canada for their support of the present investigation.

REFERENCES

1. D. Lefkovitz and R. V. Powers, "A List-Structured Chemical Information Retl"ieval
System," in G. Schecter, ed., Informatio-n Retrieval (Washington, D.C.: Thompson
Book Co., 1967), p.l09-29.

2. P. R. Weinberg, "A Time Sharing Chemical Information Retrieval System" (Doc­
toral Thesis, Univ. of Pennsylvania, 1969) .

3. R. M. Curtice, "Experimental Retrieval Systems Studies. Report No. 1. Magnetic
Tape and Disc File Organization for Retrieval" (Master's Thesis, Lehigh Univ.,
1966).

4. D. Lefkovitz, File Strttctures for On-Line Systems (New York: Spartan Books,
1969).

54 Journal of Library Automation Vol. 6/ 1 March 1973

5. I. B. Holbrook, "A Threaded-file Retrieval System," Journal of the American So­
ciety for Information Science 21: 40-48 (Jan.-Feb. 1970).

6. G. G. Dodd, "Elements of Data Management Systems," Computer Surveys 1:117-
33 (June 1969).

7. J. W. Rettenmayer, "File Ordering and Retrieval Cost," Information Storage and
Retrieval8:19-93 (April1972).

8. R. T. Divett, "Design of a File Structure for a Total System Computer Program
for Medical Libraries and Programming of the Book Citation Module" (Doctoral
Thesis, Univ. of Utah, 1968).

9. H. P. Burnaugh, "The BOLD (Bibliographic On-Line Display) System," in
G. Schecter, ed., Information Retrieval (Washington, D.C.: Thompson Book Co.,
1967)' p.53-66.

10. Lefkovitz, Powers, "A List-Structured Chemical Information," p.109--29.
11. Lefkovitz, File Structures for On-line SysteTM, p.141.
12. Ibid., p.177.
13, F. G. Kilgour, "Concept of an On-Line Computerized Catalog," Journal of Li­

brary Automation 3:1-11 (March 1970).
14. J. L. Cunningham, W. D. Schieber, and R. M. Shoffner, A Study of the Organiza­

tion and Search of Bibliographic Holdings Records in On-Line Computer SysteTM:
Phase I (Berkeley: Univ. of California, 1969).

15. R. S. Marcus, P. Kugel, and R. L. Kusik, "An Experimental Computer Stored,
Augmented Catalog of Professional Literature," in Proceedings of the 1969 Spring
Joint Computer Conference (Montvale: AFIPS Press, 1969) p.461-73.

16. J. W. Henderson and J. A. Rosenthal, eds., Library Catalogs: Their Preservation
and Maintenance by Photographic and Automated Techniques; M.I.T. Report 14
(Cambridge, Mass.: M.I.T. Press, 1968).

17. I. A. Warheit, "File Organization of Library Records," Journal of Library Auto­
mation 2:2(}...30 (March 1969) .

18. R. Morris, "Scatter Storage Techniques," Communications of the ACM 11 :38-44
(Jan. 1968).

19. D. M. Murray, "A Scatter Storage Scheme for Dictionary Lookups," Journal of
Library Automation 3:173-201 (Sept. 1970).

20. W. Buchholz, "File Organization and Addressing," IBM Systems Journal 2:86-111
{June 1963).

21. P. L. Long, K. B. L. Rastogi, J. E. Rush, and J. A. Wyckoff, "Large On-Line Files
of Bibliographic Data: An Efficient Design and a Mathematical Predictor of Re­
trieval Behavior," in Information Processing 71 (North Holland Publishing Com­
pany, 1972) p.473-78.

22. Buchholz, "File Organization," p.l02-3.
23. W. P. Reising, "Note on Random Addressing Techniques," IBM Systems Journal

2:112- 16 (June 1963).
24. Murray, "A Scatter Storage Scheme," p.178.
25. Ibid., p.181.
26. G. Schay and W. G. Spruth, "Analysis of a File Addressing Method," Communi­

cations of the ACM 5:459-62 (August 1962).
27. M. Tainter, "Addressing for Random-Access Storage with Multiple Bucket Capaci­

ties," Journal of the ACM 10:307-15 (July 1963).
28. Reising, "Note on Random Addressing," p.ll2-16.
29. W. H. Beyer, Handbook of Tables for Probability and Statistics (Cleveland: The

Chemical Rubber Company, 1966).
30. Buchholz, "File Organization," p.99.
31. Morris, "Scatter Storage," p.42.
32. W. D. Maurer, "An Improved Hash Code for Scatter Storage," Communications

of the ACM 11:35-38 (Jan. 1968).

File Structure for an On-Line Catalog/DIMSDALE 55

33. J. R. Bell, "The Quadratic Quotient Method: A Hash Code Eliminating Secondary
Clustering," Communications of the ACM 13:107-9 (Feb. 1970).

34. Morris, "Scatter Storage," p.40.
35. W. D. Reid and H. S. Heaps, "Compression of Data for Library Automation," in

Canadian Association of College and University Libraries: Automation in Li­
braries1971 (Ottawa: Canadian Library Association, 1971), p.2.1-2.21.

36. Murray, "A Scatter Storage Scheme," p.183.
37. L. H. Thiel and H. S. Heaps, "Program Design for Retrospective Searches on Large

Data Bases," Information Storage and Retrieval8:1-20 (Jan. 1972).
38. H. S. Heaps, "Storage Analysis of a Compression Coding for Document Data

Bases," INFOR 10:47-61 (Feb. 1972).
39. Thiel and Heaps, "Program Design," p.l5-16.
40. Reid and Heaps, "Compression of Data," p.2.1-2.21.
41. H. Kucera and W. N. Francis, Computational Analysis of Present-Day American

English (Providence: Brown University Press, 1967).
42. Reid and Heaps, "Compression of Data," p.2.4.
43. J. J. Dimsdale, "Application of On-Line Computer Systems to Library Automa­

tion" (Master's Thesis, Univ. of Alberta, 1971), p.50-68.
44. Thiel and Heaps, "Program Design," p.l-20.

