
The Binary Vector as the Basis
of an Inverted Index File

Donald R. KING: Rutgers University, New Brunswick, New Jersey.

307

The inverted index file is a frequently used file structure for the storage
of indexing information in a document retrieval system. This paper de­
scribes a novel method for the computer storage of such an index. The
method not only offers the possibility of reducing storage requirements fot
an index but also affords more mpid processing of query statements ex­
pressed in Boolean logic.

INTRODUCTION

The inverted index file is a frequently used file structure for the storage
of indexing information in document retrieval systems. An inverted index
file may be used by itself or with a direct file in a so-called combined file
system. The inverted index file contains a logical record for each of the
subject headings or index terms which may be used to describe documents
in the system. Within each logical record there is a list of pointers to those
documents which have been indexed by the subject heading in question.
The individual pointers are usually in the form of document numbers
stored in fixed-length digital form. Obviously, the length of the lists will
vary from record to record.

The purpose of this paper is the presentation of a new technique for
the storage of the lists of pointers to documents. It will be shown that this
technique not only reduces storage requirements, but that in many cases
the time required to search the index is reduced. The technique is useful
in systems which use Boolean searches. The relative merits of Boolean and
weighted term searches are beyond the scope of this paper, as are the rela­
tive merits of the various possible file structures.

THE BINARY VECTOR AS A STORAGE DEVICE

The exact form of each document pointer is immaterial to the user of
a document retrieval system as long as he is able to obtain the document he
desires. The standard form for these pointers in most automated systems
is a document number. Note that each pointer is by itself a piece of infor­
mation. However, if one thinks of a "peek-a-boo" system, the document

308 Journal of Library Automation Vol. 7/4 December 1974

pointer becomes simply a hole punched in a card. In this case the
position of the pointer, not the pointer itself, conveys the information.
The new technique presented in this paper is an extension of the "peek­
a-boo" concept.

A vector or string of binary zeroes is constructed equal in length to the
number of documents expected in the system. The position of each vector
element corresponds to a document number. That is, the first position in
a vector corresponds to document number one and the tenth vector posi­
tion corresponds to document number ten. A vector is constructed for each
subject heading in the system. As a document enters the system, ones are in­
serted in place of the zeroes in the positions corresponding to the new doc­
ument number in the vectors for the subject headings used to describe the
document. As an example, assume the following document descriptions
are presented to a system using binary vectors:

Document Number
1
2
3

Subject Headings
A,B,D
C,E
A,C

The binary vectors for terms A, B, C, D, and E before the insertion of the
indexing data would be as follows:

Subject Heading
A
B
c
D
E

Vector
000 ... 0
000 ... 0
000 ... 0
000 ... 0
ooo ... ·o

After the insertion of the indexing information, the same vectors would
appear as follows:

Subject Heading
A
B
c
D
E

Vector
101 ... 0
100 ... 0
011 ... 0
100 ... 0
010 ... 0

The binary vector seems to have several advantages over the standard
form of storage of document numbers in an inverted file. First, the rec­
ords are of fixed length since the vectors are all equal in length to the ex­
pected number of documents in the system. Space may be left at the end
of each vector for the addition of new documents. Periodic copying of
the file may be used to expand the index records with additional zeroes
added at the end of each record during the process. Consequently, unless

Binary Vector/KING 309

there are limitations of size imposed by the equipment, only one access to
the storage device will be needed to retrieve the index record for a term.
The second advantage offered by the binary vector method appears in the
search process. Most modern computers have a built-in capability of per­
forming Boolean logical manipulations on binary digit vectors or strings.
Thus, when Boolean operations are specified as part of a query, the imple­
mentation of the operations within the· computer is considerably easier
and faster for binary vectors than for the standard form of inverted files.

Other investigators of the use of the binary digit patterns or vectors
have not fully explored its advantages and disadvantages. Bloom suggests,
without an explanation or evaluation, the use of bit patterns as the storage
technique for inverted files in large data bases in the area of management
information systems.1 Davis and Lin, again in the area of management in­
formation systems, propose bit patterns as the means of locating pertinent
records in a master file. 2 They do not compare the method with other pos­
sible techniques. Sammon discusses briefly the use of binary vectors as a
storage technique, but dismisses it on the basis that the two-valued ap­
proach obviates the possible assignment of weights to index terms in de­
scribing documents. 3 Gorokhov discusses the use of a modified binary vec­
tor approach in a document retrieval system implemented on a small Soviet
computer.4 Faced with the need to minimize storage requirements for his
inverted file, Gorokhov concentrated on developing a technique for lo­
cating and removing strings of zeroes occurring in the binary vectors used
within the system. Since these zeroes represent the absence of information
they could be removed if there were a way to indicate the position in the
original vector of the ones that remained. He proposed the removal of
strings of zeroes and the inclusion of numeric place values with the re­
maining vector elements. His result is a file with variable-length index rec­
ords. The abandoning of the pure binary vector obviates the process, and
Gorokhov found it necessary to expand the vector elements into the orig­
inal vector before logical operations could be applied. Even though he
does not state so explicitly, Gorokhov seems to have found his method
more efficient than the standard inverted file. Gorokhov' s suggestion has led
to the development of an algorithm for the compression of binary vectors.

Heaps and Thiel have also discussed the use of compressed binary vec­
tors as the basis of an inverted index file. 5

• 6 Aside from a brief descrip­
tion of the method for implementing the concept, they offer no compari­
son of the binary vector with the standard inverted file.

STORAGE REQUIREMENTS

An immediate reaction to the concept of binary vectors is to state that
they will obviously take more storage space than the standard inverted file.
A closer study shows that this is not always the case. The storage require­
ments for the two types of files may be calculated as follows:

310 Journal of Library Automation Vol. 7/4 December 1974

D·N
1. MBv =

8
bytes

2. Msr = D · I · K

where:

(binary vector file)

(standard inverted file)

M = Storage requirements in bytes
D = Number of documents in the system
N = Number of index terms in the system
I = Average depth of indexing in the system
K = Size in bytes of a document number stored in the file

Using equations 1 and 2 we find that the storage requirements for the
binary vector file are, in fact, less than the requirements for the standard
inverted file if N < 8 •] • K.

It is well lmown that the distribution of the use of index terms follows
a logarithmic curve. In simple terms, one might say that a few terms are
used very frequently and many terms are used infrequently. This condi­
tion implies that in a binary vector file the records for many terms will
contain segments in which there are no "ones" in any byte. A method for re­
moving these "zero" bytes is called compression.

COMPRESSION ALGORITHM

The technique for the compression of binary vectors as described here
is designed specifically for the IBM 360 family of computers and similar
machines. The extension to other machines should be obvious.

Within the IBM 360 the byte, which contains eight binary digits, is the
basic storage unit, and with the eight binary digits it is possible to store a
maximum integer value of 255. For the purpose of describing a proposed
compression algorithm for the binary vector in the IBM 360, the term sub­
vector will be defined as a string of contiguous bytes chosen from within
the binary vector. A zero subvector will be a subvector each of whose bytes
contains eight binary zeroes. A nonzero subvecto1· will be a subvector each
of whose bytes contains at least one binary one. To compress a binary vec­
tor in the IBM 360 the following steps may be taken:

1. Divide the binary vector into a series of zero subvectors and nonzero
subvectors. Subvectors of either type may have a maximum length of
255 bytes. For zero subvectors longer than 255 bytes, the 256th byte is
to be treated as a nonzero byte, thus dividing the long zero subvector.

2. Each nonzero subvector is prefixed with two bytes. The first of the
prefix bytes contains the count of zero bytes which precede the non­
zero subvector in the uncompressed vector. The second prefix byte
contains a count of the bytes in the nonzero subvector.

3. The compressed vector then consists of only the nonzero subvectors
together with their prefix bytes.

4. A two byte field of binary zeroes will end the compressed vector.

Binmy Vector/KING 311

The compression of the vectors creates variable-length records and re­
moves the advantage of having records which are directly amenable to
Boolean manipulation. The effect of file compression on such manipula­
tion in the search process is not as severe as it might appear. For the search
process, the compressed vector may be expanded into its original form.
The process of expansion of the binary vectors is relatively simple, and
since only those index term records which are used in a query need to be
expanded at the search time, the search time is not significantly affected.

As an example of the use of the compression algorithm consider the fol­
lowing binary vector.

01100000/10000000/ seven zero bytes j00000001j10000000j ...

The slashes indicate the division of the vector into bytes. The vector might
be read as indicating the following list of document numbers:

2, 3, 9, 80, and 81.
In a standard inverted file with each document number assigned three
bytes of storage, fifteen bytes would be required to store these numbers.
The compressed vector which results from the application of the algo­
rithm is the following:

00000000j00000010j01100000/10000000j00000111/00000010/
00000001/10000000/ ...

Again the slashes separate the vector into bytes. For the purpose of the fol­
lowing discussion consider each byte in a vector to be numbered sequential­
ly beginning with byte one at the left.

In the uncompressed vector bytes one and two form a nonzero subvector.
Consequently, the first four bytes in the compressed vector can be inter­
preted as follows:

Byte one. Binary zero indicating that no zero bytes were re­
moved preceding this subvector.

Byte two. Binary two indicating that the following nonzero sub­
vector is two bytes long.

Bytes three, four. Bytes one and two of the original vector.

Bytes three through nine of the original vector are a zero subvector, and
bytes ten and eleven form a second nonzero subvector. Consequently, the
second four bytes of the compressed vector are interpreted as follows:

Byte five. Binary seven indicating that a zero subvector of seven
bytes has been removed.

Byte six. Binary two indicating that the following two bytes are
a nonzero subvector.

Bytes seven, eight. Bytes ten and eleven of the original vector.

Thus the binary vector has been reduced from eleven bytes to eight

312 Journal of Library Automation Vol. 7/4 December 1974

bytes while the space required to record the document numbers in the stan­
dard inverted file remains fifteen bytes.

MEMORY REQUIREMENTS FOR THE STANDARD INVERTED
FILE AND THE BINARY VECTOR FILE

To compare memory requirements for the standard inverted file and the
compressed binary vector file, we base our comparison on the total number
of postings in the file. In the standard inverted file the storage space for
the postings is equal to the number of postings times the length of a sin­
gle posting, which is usually two, three, or five bytes. Memory requirements
for the compressed binary vector file are more difficult to estimate because
the distribution of document numbers within the record for each index
term is not known. The fact that a single byte in the binary vector file may
contain between zero and eight postings is extremely important. The worst
possible case occurs if the postings in the binary vector are spaced in such
a way that each nonzero byte contains only one posting, and these bytes are
separated by zero bytes. Consider the following example:

... /00000000/00010000/00000000/00000100/ ...

In this case the compression algorithm will remove the zero bytes, but will
add two bytes (the prefix bytes) for each nonzero byte. The resulting com­
pressed vector will be essentially the same length as the standard inverted
file record if each posting is three bytes long in the standard inverted file.
It might seem that the distribution of one posting per byte for the entire
vector represents an even worse situation. It is clear that the compression
algorithm will, in this case, not reduce the size of the vector. However, it
must be remembered that in the standard inverted file each posting will re­
quire at least two bytes and perhaps three bytes. Thus, the length of the
record in the standard inverted file is two or three times longer than the
corresponding binary vector regardless of compression.

In data used in two model retrieval systems prepared to compare the
standard inverted file and the binary vector file there are 6,121 documents
with a total of 94,542 postings. An examination of the binary inverted file
for the model systems discloses that there are only 55,311 nonzero bytes in
the binary vector file. Thus there seems to be some form of clustering of
the document numbers in each index term record. If each nonzero byte in
this binary vector is isolated by zero bytes, two prefix bytes would be added
for each byte. Thus the total memory requirements for the postings in the
compressed file would be 165,933 bytes. Less storage space is required if
some nonzero bytes are contiguous. On the other hand, the standard in­
verted file will require 189,084 bytes if a two-byte posting is used, or
283,626 bytes if a three-byte posting is used. Further study of the cluster­
ing phenomenon is needed.

Binary Vector /KING 313

MODEL RETRIEVAL SYSTEMS

To test some of the conjectures about the differences between the stan­
dard inverted file and the binary vector file, two model systems were pre­
pared for operation on an IBM 360/67. Details of the systems and PL/1
program listings are available elsewhere.7 The data base used was obtained
from the Institute of Animal Behavior at Rutgers University. In the data
base 6,121 documents were indexed by 1,484 index terms. A total of 94,542
postings in the system gives an average depth of indexing of 15.4 terms per
document. Both inverted files were stored on IBM 2314 disc storage devices.

To ease the problem of handling variable-length records in both files
the logical records for each index term were divided into chains of fixed~
lehgth physical records. For the standard inverted file a physical record size
of 331 bytes was chosen. The entire file required 702,713 bytes including
record overhead. For the uncompressed binary vector file a physical record
size of 1,286 bytes was chosen to include overhead and space for up to
10,216 document numbers. When the compression algorithm was applied,
with a physical record length of 130 bytes, the memory requirements for
the binary vector file were reduced to 281,450 bytes, or 41 percent of the
space required to store the standard inverted file.

A series of forty searches of varying complexities were run against both
files. The "TIME" function of PL/1 made it possible to accumulate tim­
ing statistics which excluded input/output functions. Search times for the
binary vector file include expansion of the compressed vectors, Boolean
manipulation of the vectors, and conversion of the resultant vector into
digital document numbers. The times for the standard inverted file are for
the Boolean manipulation of the lists. The following points were noted
in the analysis of the times:

1. In twenty-two of the forty queries for which comparative timings
were obtained, the search of the binary vector file was faster, in one
case by a factor of thirty-five. In the eighteen cases in which the
search of the standard inverted file was faster, the search of the stan­
dard inverted file was at most 6.17 times faster.

2. The range of the total times for the binary vector file was .79 seconds
to 9.72 seconds. The range for searching the standard inverted file was
.15 seconds to 202.98 seconds. The fact that the search times for the
binary vector file are within a fairly narrow range, in contrast to the
wider range of times for searching the standard inverted file, has im­
portant implications for the design of an on-line interactive docu­
ment retrieval system. In such a system it is important that the com­
puter respond to users' requests not only rapidly but consistently. The
narrower range of the search times provided by the binary vector file
will assist in producing consistent times.

3. The search times for the binary vector file, exclusive of expansion
and conversion times, are unaffected by the number of postings con-

314 Journal of Library Automation Vol. 7/4 December 1974

tained in the index terms used in a query. On the other hand, the
number of postings in the records used from the standard inverted
file appears to cause the differences in search times for that file.
To test the conjectures! that
1. search times for the binary vector file are related to the number of

index terms in the query, and
2. search times for the standard inverted file are related to the num­

ber of postings in the index terms in the query,
a correlation analysis was performed. The following correlation co­
efficients were obtained:

V a1'iables 1'

Number of terms in query and search .960
times for the binary vector file.
Number of postings in query terms and .979
search times for standard inverted file.

The relationships indicated above are significant at the .001 level. No
attempt was made to compute an average search time per term for the
binary vector file or average search time per posting for the standard in­
verted file. Such times would have meaning only for the model systems.

SUMMARY

The binary vector is suggested as an alternative to the usual method of
storing document pointers in an inverted index file. The binary vector file
can provide savings in storage space, search times, and programming effort.

REFERENCES

1. Burton H. Bloom, "Some Techniques and Trade-Offs Affecting Large Data Base
Retrieval Times," Proceedings of the ACM 24 (1969).

2. D. R. Davis and A. D. Lin, "Secondary Key Retrieval Using an IBM 7090-1310
System," Communications of the ACM 8:243-46 (April1965).

3. John W. Sammon, Some Mathematics of Information Storage and Retrieval (Tech­
nical Report RADC-Tr-68-178 [Rome, New York: Rome Air Development Center,
1968]).

4. S. A. Gorokhov, "The 'Setka-3' Automated IRS on the 'Minsk-22' with the Use of
the Socket Associative-Address Method of Organization of Information" (Paper
presented at the All-Union Conference on Information Retrieval Systems and Auto­
matic Processing of Scientific and Technical Information, Moscow, 1967. Translated
and published as part of AD 697 687, National Technical Information Service).

5. H. S. Heaps and L. H. Thiel, "Optimum Procedures for Economic Information Re­
trieval," Information Storage & Retrieval6:131-53 (1970).

6. L. H. Thiel and H. S. Heaps, "Program Design for Retrospective Searches on Large
Data Bases," Information Storage & Retrieval8:1-20 (1972).

7. D. R. King, "An Inverted File Structure for an Interactive Document Retrieval
System" (Ph.D. dissertation, Rutgers University, 1971).

