
Information
Technology
AND Libraries

Open Source Software

Software Reviews

The OCLC FirstSearch service

a world of information to

your users, with a focus on your

collection. Through unparalleled
resources like WorldCat that are

enhanced by searching tools and

system features you can customize,

FirstSearch makes finding information

convenient foryour users and

affordable foryour budget. Your users

have access to the holdings of

thousands of libraries worldwide, full

text from more than 9,000 serials

(including 3,400 electronic journals),
and best of all, the riches of

your library's collection.

www.oclc.org

OCLC—Furthering Access to the World's Information

FirstSearch, OCLC and WorldCat are registered trademarks of
OCLC Online Computer Library Center, Incorporated.

OCLC Online Computer
Library Center

Dan Marmion, Editor
University of Notre Dame, Notre Dame, Indiana
(dmarmion@nd .edu)

Judith Carter, Managing Editor

OCLC, Inc., Dublin, Ohio (carterj@oclc.org)
Tom Zillner, Book Review Editor
Wisconsin Library Services, Madison, Wisconsin

(tzillner@wils.wisc.edu)
Andy Boze, Software Review Editor

University of Notre Dame, Notre Dame, Indiana
(Boze.l@nd.edu)

EDITORIAL BOARD: Kenneth J. Bierman, University of
Nevada at Las Vegas; Walt Crawford, Research Libraries
Group; Randy Dykhuis, Michigan Library Consortium;
Alan Manifold, Purdue University; Eric Lease Morgan,
University of Notre Dame; Paul Soderdahl, University of
Iowa; Marc Truitt, University of Notre Dame; Joan Frye
Williams, Information Technology Planning, Management;
Tom Wilson, University of Houston, ex officio.

Information Technology and Libraries (ISSN 0730-9295) is pub-
lished quarterly in March, June, September, and December

by the American Library Association, 50 E. Huron St.,
Chicago, IL 60611. It is the official publication of the Library
and Information Technology Association, a division of the
American Library Association. SUBSCRIPTIONS: Subscrip-
tion price, $25, is included in membership dues. Non-
members may subscribe for $50 per year in the U.S.; $55 in
Canada, Mexico, Spain, and other PUAS countries; $60 in
other foreign countries. Send subscription requests to

Information Technology and Libraries, Subscription Depart-
ment, American Library Association, 50 E. Huron St.,
Chicago, IL 60611; 800-545-2433; fax: (312) 944-2641;
subscription@ala.org. Single copies, $15. Periodical-class

postage paid at Chicago, Illinois, and at additional mailing
offices. POSTMASTER: Send address changes to Information
Technology and Libraries, 50 E. Huron St., Chicago, IL 60611.

Information Technology and Libraries publishes material
related to all aspects of libraries and information technology,
including digital libraries, metadata, authorization and
authentication, electronic journals and electronic publishing,
telecommunications, distributed systems and networks,
computer security and intellectual property rights, technical
standards, geographic information systems, desktop appli-
cations, online catalogs and bibliographic systems, optical
information systems, software engineering, universal access
to technology, futuristic forecasting, library consortia, ven-
dor relations, and technology and the arts. ITAL welcomes
unsolicited manuscripts. Submissions should follow the

guidelines stated under "Instructions to Authors" in the

June 2001 issue or on the LITA Web site at www.lita.org/
ital/infoauth.htm. Manuscripts of feature articles, commu-
nications, and tutorials should be addressed to Dan

Marmion, 221 Hesburgh Library, The University of Notre
Dame, Notre Dame, IN 46556-5629. Books for review should
be addressed to Tom Zillner, WILS, 464 Memorial Library,
728 State St., Madison, WI53706. Software for review should
be addressed to Andy Boze, Hesburgh Library, The

University of Notre Dame, Notre Dame, IN 46556-5629.

ADVERTISING: The Goldman Group, 14497 N. Dale

Mabry Hwy., Ste. 205N, Tampa, FL 33618; telephone (813)
264-2772; fax (813) 264-2343.

As a matter of policy, ITAL, as the scholarly organ of LITA,
does not review LITA publications.

PRODUCTION: ALA Production Services (Troy D. Linker,
Kevin Heubusch; Ellie Barta-Moran, Angela Hanshaw,
Kristen McKulski, and Karen Sheets), American Library
Association, 50 E. Huron St., Chicago, IL 60611.

Publication of material in Information Technology and Libraries
does not constitute official endorsement by LITA or the ALA.

Abstracted in Computer & Information Systems, Computing
Reviews, Information Science Abstracts, Library & Information
Science Abstracts, Referativnyi Zhurnal, Nauchnaya i

Tekhnicheskaya lnformatsiya, Otdyelnyi Vypusk, and Science
Abstracts Publications. Indexed in CompuMath Citation Index,
Computer Contents, Computer Literature Index, Current
Contents/Health Services Administration, Current Contents/
Social Behavioral Sciences, Current Index to Journals in

Information Technology
AND Libraries
Volume 21, Number 1 March 2002 ISSN 0730-9295

Abstracts and contents pages of recent issues of ITAL
can be found on the LITA Web site at www.lita.org/ital/index.htm.

SPECIAL ISSUE: Open Source Software
JEREMY FRUMKIN, Guest Editor

2 Guest Editorial: Balancing the Playing Field
JEREMY FRUMKIN

3 Open Source Software: A History
DAVID BRETTHAUER

12 Possibilities for Open Source Software in Libraries
ERIC LEASE MORGAN

16 The Open Source ILS: Still Only a Distant Possibility
MARSHALL BREEDING

19 MARC It Your Way: MARC.pm
ANNE HIGHSMITH, MARK JORDAN, EILEEN LLONA,
PETER E. MURRAY, AND EDWARD SUMMERS

27 The EOR Toolkit: An Open Source Solution for RDF
Metadata
HARRY R. WAGNER

33 Open Source, Open Standards
KAREN COYLE

38 Software Reviews

40 Index to Advertisers

cover design Kevin Heubusch • interior design Dianne M. Rooney

Education, Education, Library Literature, Magazine Index,
NewSearch, and Social Sciences Citation Index.
Microfilm copies available to subscribers from

University Microfilms, Ann Arbor, Michigan.

The paper used in this publication meets the mini-
mum requirements of American National Standard
for Information Sciences—Permanence of Paper for
Printed Library Materials, ANSI Z39.48-1992.°°

Copyright ©2002 American Library Association.

All material in this journal subject to copyright by
ALA may be photocopied for the noncommercial

purpose of scientific or educational advancement

granted by Sections 107 and 108 of the Copyright
Revision Act of 1976. For other reprinting, photo-
copying, or translating, address requests to the ALA
Office of Rights and Permissions.

Guest Editorial: Balancing
the Playing Field Jeremy Frumkin

As
a member of the University of Arizona's Digital

Library Initiative, I see exciting and new develop-
ments in library technology, services, and software.

Virtual reference services, library portals, electronic

reserves, e-books, the Semantic Web, you name it; the list
of new methods by libraries and librarians for serving
information to the public continues to grow and emerge.
These new opportunities also push us to constantly reex-

amine our core services and products, as well as our

underlying philosophies in how and what we serve our

customers. In reexamining ourselves, we must look at our
relationship with technology and software and our role in
the software development process. Up until now, this

process has been (primarily) the sole domain of commer-
cial vendors. Vendors are an integral part of the technology
environment in libraries, especially in software develop-
ment. However, it is up to libraries and librarians to ensure
that they are equal partners on the software development
playing field. We no longer can afford to let technology and
technology companies dictate to us what we can do and
how we can do it—instead libraries need to dictate the
functions and features of the software they use, and take an
active role in maintaining our technology ecology. To do

this, we need to expand the library community's knowl-

edge of and expertise with software development and
technology—otherwise, to use a football analogy, we'll
always be the visiting team.

Open source software (OSS) is both a philosophy and
a method that can be used to gain that homefield advan-

tage. Simply put, OSS allows the user to customize, aug-
ment, change, and enhance the software so that it better
meets their needs. It accomplishes this by providing the
source code of the software in addition to the executable

program. By doing so, anyone who owns a copy of the
software can become a developer as well. It does not

mean that every user must become a developer; in fact,
in most cases, this won't happen. What is important is
the opportunity given—the opportunity to examine and
contribute to the source code, which, at a minimum,
allows libraries to better understand their tools and sys-
terns. OSS, in essence, empowers libraries through

knowledge and understanding—it brings library values
to software.

This issue presents six articles about OSS and libraries.
David Bretthauer provides a detailed look at the develop-
ment and history of the OSS movement. Eric Lease Morgan
follows up with an article about the relationship between
OSS and libraries, and the possibilities that emerge from a

more comprehensive adoption of OSS by the library com-

munity. With a slightly different take, Marshall Breeding
presents his views on the adoption of OSS in the library
automation system arena. The authors of the fourth article

present us with a set of case studies about MARC.pm, a
piece of software that gives libraries greater control over
their MARC records and illustrates the versatility and use-

fulness of open source code in a library environment.

Harry Wagner's paper on the Extensible Open RDF toolkit
demonstrates how new research and emerging technolo-

gies can move forward using the OSS-development model.
Finally, Karen Coyle gives some context to OSS in libraries

by relating it to the concept of open standards and shows
how this important concept actually has a long history in
the library community.

I hope you find this issue interesting and useful. As
libraries become digital libraries, we need to ensure that
librarians don't become "virtual" as a result. By partici-
pating more fully in the development and requirements
of the software we use, we allow ourselves to compete on
a level playing field, and we ensure our continued stew-

ardship of today's information access. This role reinforces
our place in providing high quality, useful content to our
customers. Active participation in the library commu-

nity's technology ecology, especially through under-

standing and involvement in software development,
enables us not only to play the game but also to help
shape the rules as well.

Jeremy Frumkin (frumkinj@u.library.arizona.edu) is the Metadata
Systems Librarian for the University of Arizona Library's Digital
Library Initiatives Group, Tucson.

2 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

Open Source Software

A History David Bretthauer

In the thirty years from 1970 to 2000, open source soft-
ware (OSS) began as an assumption without a name or a
clear alternative. It has evolved into a sophisticated move-

ment that has produced some of the most stable and

widely used software packages ever produced. This paper
traces the evolution of three operating systems: GNU,
Berkeley Software Distribution (BSD), and Linux, as

well as the communities that have evolved with these sys-
terns and some of the commonly used software packages
developed using the open source model. It also discusses

some of the major figures in OSS, and defines both free
and open source software.

Since
1998, the open source software (OSS) move-

ment has become a revolution in software develop-
ment. However, the revolution in this rapidly

changing field can actually trace its roots back at least

thirty years. OSS represents a different model of software
distribution with which many are familiar. Typically in the
PC era, computer software has been sold only as a fin-
ished product, otherwise called a precompiled binary,
which is installed on a user's computer by copying files to
appropriate directories or folders. Moving to a new com-

puter platform (Windows to Macintosh, for example) usu-
ally requires the purchase of a new license. If the company
goes out of business or discontinues support of a product,
users of that product have no recourse. Bug fixes are com-

pletely dependent on the organization that sells the soft-
ware. By contrast, OSS is software that is licensed to

guarantee free access to the programming behind the pre-
compiled binary, otherwise called the source code. This
allows the user to install the software on a new platform
without an additional purchase and to get support (or ere-
ate a support mechanism) for a product whose creator no

longer supports it. Those who are technically inclined can

fix bugs themselves rather than waiting for someone else
to do so. Generally there is a distribution mechanism, such
as anonymous FTP, that allows one to obtain the source

code, as well as precompiled binaries in some cases. There
are also mechanisms for which one may pay a fee to

obtain the software as well, such as on a CD-ROM or

DVD, which may also include some technical support. A
variety of licenses are used to ensure that the source code
will remain available, wherever the code is actually used.

To be clear, there are several things open source is
not—it is not shareware, public-domain software, free-
ware, or software viewers and readers that are made

freely available without access to source code. Shareware,
whether or not one registers it and pays the registration
fee, typically allows no access to the underlying source

code. Unlike freeware and public-domain software, OSS

is copyrighted and distributed with license terms

designed to ensure that the source code will always be
available. While a fee may be charged for the software's

packaging, distribution, or support, the complete pack-
age needed to create files is included, not simply a por-
tion needed to view files created elsewhere.

The philosophy of open source is based on a variety of
models which sometimes conflict; indeed it often seems

there are as many philosophies and models for develop-
ing and managing OSS as there are major products. This
article will review the development of several major open
source projects and attempt to note philosophies of indi-
vidual projects' creators and maintainers.

The history of open source is closely tied to the his-

tory of the hacker culture, since hackers have largely sus-
tained this movement. The term hacker is used here in
the sense of one who is both a skilled professional pro-
grammer and a passionate hobbyist wishing to advance

computer science, rather than the definition recently
used by the popular press of a destructive system
cracker. Eric Raymond's essay, "A Brief History of
Hackerdom" gives an excellent overview of the develop-
ment of the hacker culture.1

■ Cultural and Philosophical
Expectations

There are cultural norms common to nearly all mature,
sustained open source projects. Eric Raymond has dis-
cussed and demonstrated them more thoroughly in

"Homesteading the Noosphere" than space allows here,
but several bear repeating. Among them:

■ Despite license terms which allow anyone to revise
source code, there is usually one person (or a very
small group of volunteers) who maintains control of
the software and incorporates patches, bug fixes, and
added features contributed by others as new releases.
This person is often the original creator of the soft-
ware package or has volunteered to succeed the ere-

ator and received the creator's blessing to carry the

project forward.
■ Often an open source project will have a developer's

discussion list (which could be an electronic mailing
list using software such as mailman or a usenet news-

group), where people who contribute patches, bug
fixes, and new features discuss their ideas and issues.

David Bretthauer (dave.bretthauer@uconn.edu) is the Network
Services Librarian, University of Connecticut, Storrs.

OPEN SOURCE SOFTWARE I BRETTHAUER 3

■ There is usually a separate discussion list for users of
the software, who often are not very technically ori-
ented and who do not normally contribute to the
source code but who can report problems and ask for

help, both from other users and any developers or

maintainers who monitor that list.
■ The project and software have a Web site dedicated to

that project. The package site may or may not have its
own domain name (for example, www.apache.org).

■ Maintainers announce new releases of software at

such Web sites as freshmeat (http://freshmeat.net)
and sourceforge (http://sourceforge.net).

■ While documentation is part of a package, widely
accepted packages will often have additional written
material in books from trade publishers such as

O'Reilly and Sam's.2

■ Richard Stallman, GNU, and the
Free Software Foundation

Richard Stallman does not identify himself as part of the
OSS movement, preferring instead the term "free soft-

ware."(An explanation of the differences between OSS
and free software are detailed below in the section

Development of the Term "Open Source.") Regardless of
this distinction, Stallman is responsible for laying much
of the groundwork for what has become the open source

movement. He worked as a programmer at the Artificial

Intelligence Lab (AI Lab) at MIT in the 1970s and early
1980s, using a locally developed operating system called

Incompatible Timesharing System (ITS). He describes his
work situation:

I had the good fortune in the 1970s to be part of a com-
munity of programmers who shared software. Now,
this community could trace its ancestry essentially
back to the beginning of computing. In the 1970s,
though, it was a bit rare for there to be a community
where people shared software. And, in fact, this was

sort of an extreme case, because in the lab where I

worked, the entire operating system was software

developed by the people in our community, and we'd
share any of it with anybody. Anybody was welcome
to come and take a look, and take away a copy, and do
whatever he wanted to do. There were no copyright
notices on these programs. Cooperation was our way of
life. And we were secure in that way of life. We didn't

fight for it. We didn't have to fight for it. We just lived
that way. And, as far as we knew, we would just keep
on living that way.

3

When he wanted to improve upon the printer driver
for a laser printer with a tendency to jam that Xerox had

given MIT, he was unable to because Xerox had not and
would not supply a copy of the source code. Furthermore,

he could not get a copy of the source code from a col-

league at Carnegie Mellon because that colleague had

signed a nondisclosure agreement with Xerox. When
Stallman was not permitted to improve upon the soft-
ware, he later said, "This was my first encounter with a

nondisclosure agreement, and I was the victim. . . .

nondisclosure agreements have victims. They're not inno-
cent. They're not harmless."4

Eventually the computer system used by the AI Lab
was replaced, making all of their lab's previous coding
obsolete and forcing the lab to use a new, proprietary
operating system. Stallman watched the collapse of his

programmer community and began to look for an alter-
native. That search led him to the concept of free soft-
ware. He decided to create an operating system complete
with all necessary software tools, such as editors, compil-
ers, and utilities, that should be UNIX-compatible so that

programmers could use it without having to learn a new

operating system. He settled on GNU (pronounced "guh-
NEW") as a name for this operating system, a recursive
acronym for "GNU's Not UNIX."

In January 1984, he resigned his position at MIT to

begin developing GNU. He resigned so that MIT would
not be able to interfere with the distribution of GNU as

free software. However, Professor Winston, then head of
the MIT AI Lab, invited him to continue to use his former
office and facilities, and thus he began to develop the

pieces. In early 1985, Stallman released the first piece that
other programmers were interested in using, an editor
called GNU Emacs. He made it available without charge
via anonymous FTP; at that time, however, access to the
Internet was not very common. As an alternate means of

distributing the software, he offered to send people the

package on tape for $150. Within a few months he was

receiving eight to ten orders per month, which allowed
him to pay his living expenses. "So, that was fine, but
people used to ask me, 'What do you mean it's free soft-
ware if it costs $150?' . . . The reason they asked this was

that they were confused by the multiple meanings of the
English word free. One meaning refers to price, and
another meaning refers to freedom. When I speak of free
software, I'm referring to freedom, not price. So think of
free speech, not free beer."5

Stallman defines free software as possessing four
essential freedoms:

■ You have the freedom to run the program for any
purpose.

■ You have the freedom to modify the program to suit

your needs. (To make this freedom effective in prac-
tice, you must have access to the source code, since
making changes in a program without having the
source code is exceedingly difficult.)

■ You have the freedom to redistribute copies, either
gratis or for a fee.

4 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

■ You have the freedom to distribute modified versions
of the program, so that the community can benefit
from your improvements.6

Beyond the concept of freedom, another interesting
development was that as the number of programmers
using GNU Emacs increased, some of them started to send
him messages noting bugs in his source code and offering
fixes. Others sent new source code to add new features.
Soon these kinds of messages "were pouring in on me so

fast that just making use of all this help I was getting was

a big job. Microsoft doesn't have this problem."7
Stallman also made a practice of incorporating source

code written by others wherever possible. Often the

determining factor for including the work of others or not
was the terms of distribution. For example, this was

behind his decision to use the X Window graphical user
interface as part of GNU, rather than writing a new win-

dowing system from scratch.
With work on GNU progressing, Stallman needed a

way to protect his work from being taken and used in

proprietary packages. To ensure this protection, Stallman
developed the general concept of copyleft. Traditionally,
software is made available either by its author releasing
it into the public domain or by closing the source code
and using copyright and licensing terms to protect it so it
cannot be modified. Each presented a problem for
Stallman: releasing software into the public domain
means anyone can take it and appropriate it for their
own use, including copyrighting it themselves and

licensing it as a proprietary product. Releasing it with
restrictive copyright and license terms prevents the
entire user-review, bug-fix, and feature-addition mecha-
nism that Stallman had found valuable:

To copyleft a program, we first state that it is copy-
righted; then we add distribution terms, which are a

legal instrument that gives everyone the rights to use,

modify, and redistribute the program's code or any pro-
gram derived from it but only if the distribution terms

are unchanged. Thus the code and the freedoms
become legally inseparable. Proprietary software

developers use copyright to take away the users' free-

dom; we use copyright to guarantee their freedom.
That's why we reverse the name, changing "copy-
right" into "copyleft."8

The specific method Stallman used to copyleft GNU
was a licensing agreement he developed called the GNU
General Public License (GNU GPL). The first version was
released in 1989; the second and current version was

released in 1991.
To support the development of GNU, Stallman

founded the Free Software Foundation in October 1985. It
is "a tax-exempt charity that raises funds to promote the
freedom to share and change software. And in the 1980s,
one of the main things we did with our funds was to hire

people to write parts of GNU. And essential programs,
such as the shell and the C library were written this way,
as well as parts of other programs."9 While the Free
Software Foundation accepts donations, "most of its
income has always come from sales—of copies of free
software, and of other related services."10

By 1991, Stallman and his programmers had written

everything for GNU except the kernel, the part that ties
the entire system together. By that time, Linus Torvalds
had released the Linux kernel, and he and others com-

bined it with the rest of the GNU operating system (see
section on Linus Torvalds and Linux). Almost invariably
this operating system has ever since been referred to as

Linux. Stallman argues, and some evidence demon-
strates, that it should more correctly be called GNU-
Linux.

Stallman argues that free software is very much in the
interest of commerce by giving businesses control over
what the software does or does not do. Businesses that
need additional functions can hire programmers to add
features if the required skills are not available in-house. In
addition, support can be handled the same way. It also
ensures privacy and security for the business. "[Wjhen a

program is proprietary, you can't even tell what it really
does ... it might have a backdoor to let the developer get
into your machine. It might snoop on what you do and
send information back. This is not unusual."11

According to Stallman the worst threat to the
free /OSS community comes from the use of software

patents instead of copyright as a means of protecting
intellectual property rights. Currently, software patents
are held and enforced on the compression algorithms that
make GIF and MP3 formats possible. Both are widely
used formats on the Web, but the patents are often invis-
ible to end users who do not need to pay license fees to

view or listen to GIF and MP3 files. However, software
developers are required to pay license fees when devel-

oping software that can be used to create these files—
even if that software is not distributed for a profit. As a

result, a creator of an open source package that produces
GIF or MP3 files can be sued (as has been threatened to

such authors by patent holders). Therefore, the use of the
software patent mechanism effectively prevents the ere-

ation of OSS.

■ Berkeley Software Distribution (BSD)

What was once Bell Labs' UNIX operating system has
evolved, after a convoluted path, to become another pres-
ence in the open source world as three different operating
system products: NetBSD, FreeBSD, and OpenBSD.
While these operating systems are lss well known than

OPEN SOURCE SOFTWARE I BRETTHAUER 5

Linux, their development illustrates how OSS can work
and influence other projects.

The University of California at Berkeley obtained a

copy of UNIX from Bell Labs in 1974. Over the following
four years, Bell Labs and Berkeley enjoyed a strong col-
laborative relationship that helped UNIX to flourish.12

However, by 1977 this collaboration also resulted in two

distinct branches of the development tree: the Bell Labs
UNIX and BSD. BSD was shared with research universi-
ties around the world, provided they first purchased a

source license from AT&T and with that obtained the full
source code for both Bell Labs UNIX and BSD. This model

encouraged others to view source code and contribute to

its development.
Bell Labs released its final version of UNIX in 1978;

"thereafter all UNIX releases from AT&T . . . were man-

aged by a different group that emphasized stable com-

mercial releases. With the commercialization of UNIX, the
researchers at Bell Laboratories were no longer able to act

as a clearing-house for the ongoing UNIX research."13

Nevertheless, the research community continued to

develop UNIX. As a result, the Berkeley Computer
Systems Research Group (CSRG) was formed to replace
Bell Labs as an organization that could coordinate and

produce further research UNIX releases.
In the early 1980s, the CSRG made several significant

additions to UNIX. Key among these was the addition of
Internet protocols (TCP/IP). This implementation of
TCP/IP has served as the basis of, and sometimes the
direct source for, every implementation of TCP/IP since.

Eventually, the Berkeley improvements were incorpo-
rated in AT&T UNIX (post-Bell Labs versions of UNIX
released by AT&T), but for several years, TCP/IP was

only available using BSD.
The cost of the required AT&T source license was a

prohibitive $50,000 for vendors who "wanted to build
standalone TCP/IP-based networking products for the
PC market... [s]o, they requested that Berkeley break out
the networking code and utilities and provide them
under licensing terms that did not require an AT&T
source license."14 This was possible because TCP/IP had
never been in the Bell Labs' source code and was devel-

oped entirely by Berkeley and contributors to BSD. In

June 1989, the first freely redistributable source code from

Berkeley was released as Networking Release l. 15

Marshall Kirk McKusick describes its early distribution:

The licensing terms were liberal. A licensee could
release the code modified or unmodified in source or

binary form with no accounting or royalties to Berkeley.
The only requirements were that the copyright notices
in the source file be left intact and that products that

incorporated the code indicate in their documentation
that the product contained code from the University of
California and its contributors. Although Berkeley

charged a $1,000 fee to get a tape, anyone was free to get
a copy from anyone who already had received it.

Indeed, several large sites put it up for anonymous FTP
shortly after it was released. Given that it was so easily
available, the CSRG was pleased that several hundred

organizations purchased copies, since their fees helped
fund further development.

1

One member of CSRG, Keith Bostic, noted the popu-
larity of Networking Release 1 and raised the possibility
of producing an expanded release that would include
more BSD code. It was pointed out to him that producing
such a release would involve replacing hundreds of files

originally developed by Bell Labs. Bostic's approach to

solving this problem would become the classic model

employed elsewhere: using the Internet, he solicited
interested programmers to rewrite UNIX utilities based
on the published descriptions of those utilities. The only
compensation these volunteer programmers would
receive would be their name listed by the utility they
rewrote in the list of Berkeley contributors. In less than
two years, most of the necessary files had been rewritten.

Bostic and two other CSRG members, Marshall Kirk
McKusick and Mike Karels, then spent several months
reviewing every file in the distribution. Ultimately they
determined that six kernel files remained with Bell Labs
code that could not quickly be rewritten. Rather than take
the time to rewrite those files, and to avoid the delay of
drafting a new license agreement, CSRG released the
BSD source code they had as Networking Release 2,
with the same terms as Networking Release 1. Again,
several hundred organizations paid $1,000 for copies of
the distribution.

Another CSRG member, Bill Jolitz, incorporated his
own files with the Networking Release 2 distribution and
released 386BSD. By several accounts, it was not a very
stable release, and Jolitz was so particular about the direc-
tion of 386BSD that he apparently alienated many of its
enthusiasts. Nevertheless, he took the step of making the
source code available via anonymous FTR When he did
not make a practice of incorporating contributed bug
fixes or producing alternative fixes, a number of 386BSD
users formed the NetBSD Group to coordinate the devel-
opment of this system, and their work became known as

NetBSD. This group has always focused on making BSD
run on "a large number of hardware platforms."17 The
NetBSD Group, in the tradition of CSRG, has also focused
on experimentation and research rather than developing
the most stable BSD possible. More information is avail-
able at www.netbsd.org.

Another group initially focused continued develop-
ment exclusively on the Intel x86 platform (it now sup-
ports Alpha hardware as well); a few months later this

group adopted as its name the FreeBSD Project. FreeBSD
has become the most widely used BSD, as its managers

6 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

have focused on inexpensive CD-ROM distribution and
ease of installation. The distribution also includes a Linux
emulation package that allows Linux programs to run on

FreeBSD machines, as well as access to thousands of open
source packages through the "Ports Collection," which
allows relatively simple compiling and installation of
these packages from source code. More information is
available at www.freebsd.org.

From 1994 to 1995, a series of disagreements led to the

split of OpenBSD from NetBSD. Theo de Raadt has led

development of OpenBSD, focusing on stable, secure dis-
tributions which incorporate cryptography. More infor-
mation is available at www.openbsd.org.

At the same time 386BSD was being developed in
1991 and 1992, Berkeley Software Design began to market
a commercially supported version (originally called
BSD/386, now called BSD/OS) by writing their own

replacement kernel files as Jolitz had. AT&T's subsidiary,
UNIX System Laboratories, filed a lawsuit to stop the

company from marketing a product that was implied to

be UNIX. Eventually, UNIX System Laboratories was sold
to Novell. In January 1994, the case was settled out of
court and distribution of the source code of the latest ver-
sion of BSD, called 4.4BSD-Lite, was allowed. Replacing
Network Release 2 files with 4.4 BSD-Lite involved
another major rewrite of all BSD operating systems. 18

Another result is that BSD cannot legally be called
UNIX, since UNIX is now a registered trademark of the

Open Group. However, at least one writer bluntly states,

"[historically and technically, it has greater rights than
UNIX System V to be called UNIX."19

A significant difference between the BSD license and
the GNU GPL is that the BSD license does nothing to pre-
vent the creation of proprietary software packages based
on modified BSD code. In fact, Microsoft has repeatedly
used FreeBSD code implementing TCP/IP in several ver-
sions of Windows, and admitted to doing so even as it

was criticizing OSS in June 2001.20 According to Jordan
Hubbard, FreeBSD project cofounder, "Rather than take
the approach that corporations and other interested par-
ties should be 'forced' into cooperating with the Open
Source movement, the many commercial and noncom-

mercial software developers who are behind the BSD
movement . . . want their software used by anyone and

everyone," with a concern that the GNU GPL will prevent
commercial developers from participating at all in open
source.21

■ Linus Torvalds and Linux

In October 1991 an undergraduate student at the

University of Finland named Linus Torvalds released

Linux kernel version 0.02. In announcing its release, he
posted this message to the comp.os.minix newsgroup:

Do you pine for the nice days of Minix-1.1, when men

were men and wrote their own device drivers? Are you
without a nice project and just dying to cut your teeth
on an OS you can try to modify for your own needs?
Are you finding it frustrating when everything works
on Minix? No more all-nighters to get a nifty program
working? Then this post might just be for you.

As I mentioned a month ago, I'm working on a

free version of a Minix-lookalike for AT-386 comput-
ers. It has finally reached the stage where it's even

usable (though may not be depending on what you
want), and I am willing to put out the sources for
wider distribution. It is just version 0.02 . . . but I've

successfully run bash, gcc, gnu-make, gnu-sed, com-
press, etc. under it.

22

Even readers who do not understand the technical ter-

minology can recognize the attitude of wanting to take
control of a software project, even at the risk of failure,
and the joy of working at an operating system just for the
sake of working at it in the hacker tradition.

At the time Torvalds was working on this, BSD source

code was not quite fully available, and the GNU kernel,
HURD, was mired in development that would eventually
take years. But rather than write a complete operating
system, Torvalds was already integrating GNU tools with
his kernel. It is on this basis that Richard Stallman has

argued that Linux should more properly be called GNU-
Linux. However, Marshall Kirk McKusick has pointed
out that, "about half of the utilities that [Linux] comes
packaged with are drawn from the BSD distribution."23

Torvalds focuses on the technology and the commu-

nity that built it:
Linux today has millions of users, thousands of devel-

opers, and a growing market. It is used in embedded

systems; it is used to control robotic devices; it has flown
on the space shuttle. I'd like to say that I knew this
would happen, that it's all part of the plan for world
domination. But honestly this has all taken me a bit by
surprise. I was much more aware of the transition from
one Linux user to one hundred Linux users than the
transition from one hundred to one million users.

24

This last statement bears emphasis and further exam-
ination, as it belies a development style somewhat differ-
ent from those of GNU, BSD, and Apache. These

packages were developed "in a carefully coordinated way
by a small, tightly-knit group of people . . . [while Linux,
by comparison], was rather casually hacked on by huge
numbers of volunteers coordinating over the Internet."25

Raymond describes these approaches to development as
"Cathedral" and "Bazaar," respectively:

Quality [in the "Bazaar" model] was maintained not by
rigid standards or autocracy but by the naively simple

OPEN SOURCE SOFTWARE I BRETTHAUER 7

strategy of releasing every week and getting feedback
from hundreds of users within days, creating a sort of

rapid Darwinian selection on the mutations introduced

by developers. To the amazement of almost everyone,
this worked quite well.26

Eric Raymond further asserts, "[b]y late 1993, Linux
could compete on stability with many commercial

UNIXs, and it hosted vastly more software. It was even

beginning to attract ports of commercial applications soft-
ware."27 This trend has only continued. According to

Raymond:
Linux is a project that was conceived some five years
after Microsoft began development of Windows NT.

Microsoft has spent tens of thousands of man-hours
and millions of dollars on the development of
Windows NT. Yet today Linux is considered a compet-
itive alternative to NT as a PC-based server system, an
alternative that major middleware and backend soft-
ware is being ported to by Oracle, IBM, and other

major providers of enterprise software. The Open
Source development model has produced a piece of
software that would otherwise require the might and
resources of someone like Microsoft to create. 28

Over the past five years, the computer trade press has

greatly increased coverage of OSS, primarily Linux. The

question for many information technology (IT) profes-
sionals has changed. Instead of asking themselves if they
will use OSS in their shops, they are now asking where

they will use it.
Eric Raymond's collection of essays published in The

Cathedral and the Bazaar has examined the reasons for
Linux's success in great depth. In fact, Raymond deliber-

ately imitated Torvalds's development style as an experi-
ment when managing the fetchmail project and analyzed
it in the essay of the same name.29 A frequently quoted
message from that essay is, "Given enough eyeballs, all
bugs are shallow."30 Torvalds extends this by again focus-

ing on the Linux community:
The power of Linux is as much about the community
of cooperation behind it as the code itself. If Linux
were hijacked—if someone attempted to make and
distribute a proprietary version—the appeal of Linux,
which is essentially the open-source development
model, would be lost for that proprietary version.31

Beyond the stability of the project, Linux has also

prompted the development of a business model that

might not seem possible: selling freely available software
and making a profit. By 1994, a number of distributions of
Linux were available for less than thirty dollars. These
included Yggdrasil, Slackware, Debian, Suse, and others.

One, Red Hat, has grown into a publicly traded company.
According to Robert Young, CEO of Red Hat, "you make

money in free software exactly the same way you do it in

proprietary software: by building a great product, mar-
keting it with skill and imagination, looking after your

customers, and thereby building a brand that stands for

quality and customer service."32

■ Other Widely Used Open Source

Packages
Thus far this article has focused on the development of
open source operating systems and related tools. But in
fact a number of software packages have been developed
as open source projects. Among them:

■ In 1987 Larry Wall released PERL 1.0 scripting/pro-
gramming language. Its current release is version 5.6.

■ In 1990 Guido van Rossum released Python pro-
gramming language.

■ In 1994 Rasmus Lerdorf released PHP/FI Web script-
ing/programming language. Its current release is
PHP 4.0.6.

■ In 1995 the Apache Web server program was released
and quickly became the most widely used Web
server product (which it remains today).

■ In the mid-1990s mSQL, MySQL, and PostgreSQL
relational databases were released.

■ Also in the mid-1990s Andrew Tridgell released
Samba, a set of utilities that allows UNIX machines to
use the same network communication protocol as

Microsoft Windows.

The developers of these packages have focused on the
cultures surrounding the projects as well as the projects
themselves. Larry Wall has summed up this emphasis by
saying, "As a linguist, I understood that a language with-
out a culture is dead. If you get the culture right, the tech-

nology will happen."33
While many of these packages originally ran exclu-

sively on UNIX, most have been ported to other operating
systems, including Windows. The other significant devel-
opment was the involvement of commercial interests in
the open source movement. As already stated, corpora-
tions such as IBM and Oracle have ported software to the
Linux platform. Just as significantly, commercial training,
certification, and support are available for Apache,
MySQL, and PostgreSQL, just as they are for Linux.

In January 1998 Netscape released the source code for
its browser under an open source license, beginning the
Mozilla project. As of November 2001 Mozilla had not yet
produced a release version 1.0, but was at 0.9.4. This

might seem to classify Mozilla as less than successful, but
two issues argue against that idea:
■ While development has been relatively slow, it has

been steady, and recent versions have been quite stable.
■ The less visible issue in 1998 was that Netscape made

most of its money selling server software. "For

Netscape the issue was less about browser-related

8 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

income (never more than a small fraction of their rev-
enues) than maintaining a safe space for their much
more valuable server business. If Microsoft's Internet

Explorer achieved market dominance, Microsoft
would be able to bend the Web's protocols away from
open standards and into proprietary channels that

only Microsoft's servers would be able to service."

■ Development of the Term "Open
Source"

Considering that what is now characterized as the open
source movement has been in conscious development for
nearly two decades, the term "open source" itself has been
a relative latecomer. In fact, the term was proposed and
voted on by a group of people who were meeting on a reg-
ular basis in late 1997 and early 1998 and who were inter-
ested in spreading awareness of the sophisticated tools that
had been developed outside the proprietary software

development model. The term was proposed by Christine
Peterson of the Foresight Institute. Peterson tells the story:

It was a very deliberate effort at a name change. In late
1997 or very early 1998, a number of us felt the name

"free software" was holding back the budding indus-

try/movement. Newcomers always thought "free"
meant free-as-in-beer, not free-as-in-speech. Various
ideas were kicked around, including at a meeting at

Foresight, but none were catching on.

On my own I thought of open source, ran it by my
PR friend (who didn't like it) and a couple of personal
friends (who did).

At the next meeting of the little group convened

by Eric Raymond, this time at VA, I was shy about sug-
gesting the new term—I had no standing with this

group. So Todd Andersen, with whom I'd planned the
name change effort, just used it casually, not suggest-
ing it as an explicit new term. It caught on immediately
at the meeting, without the others noticing except
Todd and me, who winked at each other. At the end of
the meeting, it was pointed out by Todd or me that this
new term seemed to be working, and people seemed

willing to give it a try.
The others later weren't sure who came up with it,

but Todd made sure I got credit, which I usually don't
push for. Nice of him. And Eric Raymond has also
been good about making sure I get credit for it.

Now I try to go around renaming things all the
time.35

Eric Raymond remembers the meeting a bit differ-

ently: "I remember hearing Christine say 'open source'
and thinking 'we have a winner.' It may have slipped by
other people, but it didn't get by me."36

This group registered the domain name opensource.
org, defined "open source," developed OSI certification,

and created a list of licenses that meet the standards for

open source certification.
The basic definition is:

■ The license shall not restrict any party from selling or
giving away the software as a component of an

aggregate software distribution containing programs
from several different sources.

■ The program must include source code and must

allow distribution in source code as well as compiled
form.

■ The license must allow modifications and derived
works and must allow them to be distributed under
the same terms as the license of the original software.

■ The license may restrict source code from being dis-
tributed in modified form only if the license allows
the distribution of patch files with the source code for
the purpose of modifying the program at build time.

■ The license must not discriminate against any person
or group of persons.

■ The license must not restrict anyone from making use

of the program in a specific field of endeavor.
■ The rights attached to the program must apply to all

to whom the program is redistributed without the
need for execution of an additional license by those

parties.
■ The license must not be specific to a product.
■ The license must not contaminate other software by

placing restrictions on any software distributed along
with the licensed software.37

"The Open Source Definition allows greater liberties
with licensing than the GPL does. In particular, the Open
Source Definition allows greater promiscuity when mix-

ing proprietary and open-source software."38 This is
Richard Stallman's objection to OSS—that it allows the
inclusion of proprietary software and ignores the philo-
sophical issue of software freedom. Without these free-
doms, there is no philosophical imperative to improve
one's community. Nevertheless, "[w]e disagree on the
basic principles, but agree more or less on the practical
recommendations. So we can and do work together on
many specific projects. We don't think of the Open Source
movement as the enemy."39

This is a point reiterated by many who are active in var-
ious competing open source and free software packages.
While this article has focused on a number of differences
between operating systems, approaches to collaboration,
and the evolution of various license agreements, this focus
is at the micro level. At the macro level, nearly everyone
mentioned in this article would prefer a competing open
source or free package to a proprietary software package.
In the future those who have blazed new trails will con-
tinue to argue the finer distinctions between their respec-
tive works. However, the various groups involved are

willing to work with and support one another's right to

OPEN SOURCE SOFTWARE I BRETTHAUER 9

choose a different approach to solving a problem. And it is
clear these individuals look forward to another generation
building upon the successes of the past thirty years.

References and Notes

1. Eric S. Raymond, "A Brief History of Hackerdom," in The
Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary (Sebastopol, Calif.: O'Reilly and Assoc.,
1999). Also available at http://tuxedo.org/~esr/writings/
cathedral-bazaar/hacker-history. Accessed Oct. 20, 2001.

2. Eric S. Raymond, "Homesteading the Noosphere," in The
Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary (Sebastopol, Calif.: O'Reilly and Assoc.,
1999). Also available at http://tuxedo.org/~esr/writings/
cathedral-bazaar/hacker-history. Accessed Oct. 20, 2001.

3. Richard M. Stallman, Transcript of Richard M. Stallman's

speech, "Free Software: Freedom and Cooperation," New York

University, New York, May 29, 2001 in GNU's Not Unix!
Accessed Aug. 23, 2001, www.gnu.org/events/rms-nyu-2001-
transcript.txt.

4. Ibid.
5. Ibid.
6. Richard M. Stallman, "The GNU Operating System and the

Free Software Movement," in Open Sources: Voices from the Open
Source Revolution, edited by Chris DiBona, Sam Ockman, and
Mark Stone (Sebastopol, Calif.: O'Reilly and Assoc., 1999), 56.

7. Stallman, "Free Software: Freedom and Cooperation."
8. "What Is CopyLeft?," in Free Software Licenses—GNU

Project, Sept. 15, 2001. Accessed Oct. 22, 2001, www.gnu.org/
licenses/ licenses.html.

9. Stallman, "Free Software: Freedom and Cooperation."
10. Stallman, "The GNU Operating System," 60.
11. Stallman, "Free Software: Freedom and Cooperation."
12. This evolution is described in careful detail in Marshall Kirk

McKusick, "Twenty Years of Berkeley UNIX: From AT&T-Owned
to Freely Redistributable" in Open Sources: Voices from the Open
Source Revolution, edited by Chris DiBona, Sam Ockman, and Mark
Stone (Sebastopol, Calif.: O'Reilly and Assoc., 1999), 31-46. Much
of this section is condensed from that source. Also, a timeline

depicting the entire history of AT&T UNIX and BSD is available at

ftp:/ / ftp.netbsd.org/pub/NetBSD/NetBSD-current/
src/share/mis/bsd-family-tree. Accessed Oct. 20, 2002.
13. McKusick, "Twenty Years of Berkeley UNIX," 34-35.
14. Greg Lehey, The Daemon's Advocate: Anarchies,

Monarchies, and Dictatorships, in Daemonnews: Bringing BSD

Together, Oct. 2000. Accessed Nov. 11, 2001, http://
daemonnews.org/200010/dadvocate.html.
15. McKusick, "Twenty Years of Berkeley UNIX," 40.
16. Ibid., 41.
17. NetBSD, About NetBSD. Accessed Sept. 2, 2001,

www.netbsd.org/Misc/about.html.
18. Jordan Hubbard, "A Brief History of FreeBSD," in

FreeBSD Handbook. Accessed Nov. 10, 2001, www.freebsd.org/
doc/en_US.IS08859-l /books/handbook/index.html.

19. Greg Lehey, introduction to The Complete FreeBSD, 3d ed.
(Walnut Creek, Calif.: Walnut Creek CD-ROM, 1999), xxix.
20. Lee Gomes, "E-Business: Microsoft Uses Free Code," The

Wall Street Journal, June 18, 2001.
21. Jordan Hubbard, "Mister, How Far Is Licensing from

Utopia?" Open, 2.6 (June 2001), 48.
22. Linus Torvalds, Linux History, in Linux International,

©2001. Accessed Nov. 10, 2001, www.li.org/linuxhistory.php.
Torvalds's entire series of announcements is available at this site.
23. McKusick, "Twenty Years of Berkeley UNIX," 46.
24. Linus Torvalds, "The Linux Edge," in Open Sources: Voices

from the Open Source Revolution, edited by Chris DiBona, Sam
Ockman, and Mark Stone (Sebastopol, Calif.: O'Reilly and
Assoc., 1999), 101.
25. Raymond, "A Brief History of Hackerdom," 24.
26. Ibid.
27. Ibid.
28. Chris DiBona, Sam Ockman, and Mark Stone, eds., intro-

duction to Open Sources: Voices from the Open Source Revolution,
(Sebastopol, Calif.: O'Reilly and Assoc., 1999), 17.
29. Eric S. Raymond, The fetchmail Home Page, Nov. 08,

2001. Accessed Nov. 11, 2001, http://tuxedo.org/~esr/
fetchmail.
30. Eric S. Raymond, "The Cathedral and the Bazaar," in The

Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary (Sebastopol, Calif.: O'Reillv and Assoc.,
1999), 41.
31. Torvalds, "The Linux Edge," 109.
32. Robert Young, "Giving It Away: How Red Hat Software

Stumbled across a New Economic Model and Helped Improve
an Industry," in Open Sources: Voices from the Open Source
Revolution, edited by Chris DiBona, Sam Ockman, and Mark
Stone (Sebastopol, Calif.: O'Reilly and Assoc., 1999), 114.
33. Larry Wall, "The History of PERL," presentation deliv-

ered at the 120th ALA Annual Conference, San Francisco, Calif.,
June 17, 2001, as part of the program, "Web Tools and Digital
Resources: Open Source Then and Now."
34. Eric S. Raymond, "The Revenge of the Hackers," in The

Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary (Sebastopol, Calif.: O'Reilly and Assoc.,
1999), 202.
35. Christine Peterson, "Quick Question about the Term

'Open Source,"' personal e-mail to the author, Aug. 31, 2001.
36. Eric S. Raymond, "Quick Question about the Term 'Open

Source,"' personal e-mail to the author, Sept. 1, 2001.
37. OpenSource.org., The Open Source Definition, Version

1.8. Accessed Sept. 1, 2001, http://opensource.org/docs/
definition.html.
38. DiBona, Ockman, and Stone, eds., introduction to Open

Sources, 3.
39. Why "Free Software" Is Better than "Open Source," in

GNU Project—Free Software Foundation, Aug. 20,2001. Accessed
Oct. 22, 2001, www.gnu.org/philosophy/free-software-for-
freedom.html.

10 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

Find it. Faster.

5711 S. 86th Circle • P.O. Box 27347 • Omaha, NE 68127
Phone: (402) 593-4523 • Fax: (402) 596-7688 • www.libraryUSA.com

You just got a request for a list of
grocery stores in a three-state area

with more than 20 employees.

You could search through dozens

of reference sources to create that

list. Or, you could call the Library
Division of infoUSA.

We offer the country's most
extensive databases of business and

residential information. And, you
choose the format you want: print,
CD-ROM or via the Internet.

Want more information? Call us

today at 1-800-808-1113 or

e-mail: library@infoUSA.com.

Your search is over.

23930

Possibilities for Open Source
Software in Libraries Eric Lease Morgan

This short essay, based on a presentation given at the
2001 American Library Association (ALA) Annual

Conference, enumerates a number ofpossibilitiesfor open
source software (OSS) in libraries and how it can be

leveraged to provide better and more effective digital
library collections and services.

of a project's success relies on the primary developer's abil-
ity to foster communication and a sense of community
around the project. Once accomplished, the "two heads are
better than one" philosophy takes effect and the project
matures. A highly recommended book titled The Cathedral
and the Bazaar by Eric S. Raymond outlines this process in
much greater detail.3

■ OSS Briefly Defined

Open source software (OSS) is both a philosophy and a

process. It is a philosophy describing the intended use of
software and methods of distribution. OSS is often times

equated with GNU software as well as described as free
software, but the term "free" should be more equated
with the Latin word liberat (meaning to liberate), and not
necessarily gratis (meaning without return made or

expected). In the words of Richard Stallman, the founder
of the GNU software project, we should "think of 'free' as
in 'free speech,' not as in 'free beer.'" 1 In this regard, the
ideology behind OSS is not unlike some of the basic prin-
ciples of librarianship in America.2

OSS is also a process for the creation and maintenance
of software. This is not a formalized process, but rather a

process of convention with common characteristics
between software projects. First and foremost, the devel-

oper of a software project almost always is trying to solve
a specific computer problem—commonly called "scratch-

ing an itch." The developer realizes other people may
have the same problem, and consequently the developer
makes the project's source code available on the Internet
in the hopes that other people can use it too. If there
seems to be a common need for the software, a mailing
list is usually created to facilitate communication, and
hopefully the list is archived. Since the software is almost

always in a state of flux, developers need some sort of
version-control software to help manage the project's
components. The most common version-control software
is called CVS (Concurrent Versions System).

Codevelopers then "hack away" at the project, adding
features they desire or fixing bugs of previous releases. As
these features and fixes are created, the source code's mod-
ifications, in the form of "diff" files, are sent back to the

project's leader. The leader examines the diff files, assesses
their value, and decides whether or not to include them
into the master archive. The cycle then begins anew. Much

Eric Lease Morgan (emorgan@nd.edu) is Head of the Digital
Access and Information Architecture Department at the

University Libraries of Notre Dame, Indiana.

I OSS Contrasted with

Homegrown Systems
Some people may remember the homegrown integrated
library systems developed in the '70s and '80s, and these
same people may wonder how OSS is different from those
humble beginnings. There are two distinct differences.
The first is the present-day existence of the Internet. This

global network of computers enables people to communi-
cate over much greater distances, and it is much less

expensive than twenty-five years ago. Consequently,
developers are not as isolated as they once were and the
flow of ideas travels more easily between developers—
people who are trying to scratch an itch. Yes, there were

telephone lines and modems, but the processes for using
them were not as seamlessly integrated into the comput-
ing environment (and there were always long-distance
communications charges to contend with).4

Second, the state of computer technology and its

availability has dramatically increased in the past twenty-
five years. At that time, computers, especially the type
used for large-scale library operations, were almost

always physically large, extremely expensive, remote
devices whose access was limited to a small group of spe-
cialized individuals. Today, the computers on most peo-
pie's desktops have enough RAM, CPU horsepower, and
disk space to support a college campus of twenty-five
years ago.

5

In short, the OSS development process is not like the

homegrown library systems of the past simply because
there are more people with more computers who are able
to examine and explore the possibilities of solving more

computing problems. In the days of the homegrown sys-
terns people were more isolated in their development
efforts and more limited in their choice of computing
hardware and software resources.

■ State of OSS in Libraries

What is the state of OSS in libraries today? Daniel
Chudnov has been the profession's evangelist for the past
two or three years, the original author of jake (jointly
administered knowledge environment), and the main-

12 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

tainer of the oss41ib.org domain as well as its mailing list.
Chudov has done a lot to raise the awareness of OSS in
libraries. To that end he, Gillian Mayman, and others
maintain a list of open source system projects. These proj-
ects include a lot of software designed specifically for
libraries such as (but not limited to):
■ Document delivery applications (Prospero by Eric

Schnell)
■ Z39.50 clients and servers (Yaz and SimpleServer by

Sebastian Hammer, Zeta Perl by Rocco Carbone, and
JZKit by Knowledge Integration, Ltd.)

■ Systems to manage collections (Catalog by Senga,
Greenstone by Ian H. Witten et al., ROADS funded

by JISC via the eLib Programme, and OSCR by Wally
Grotophorst)

■ MARC record readers and writers (MARC.pm by
Bearden et al., m[n]m by Robert McDonald et al., and
XMLMARC by Lane Medical Library)

■ Integrated library systems (Avanti by Peter Schlumpf,
Koha by Rosalie Blake and Rachel Hamilton-Williams,
OpenBook by the Technology Resource Foundation,
and OSDLSP by Jeremy Frumkin and Art Rhyno)

■ Systems to read and write bibliographies (bib2html
by Stephanie Galland, bp by Dana Jacobsen, gBib by
Alejandro Sierra and Felipe Bergo, and Pyblio-
grapher by Frederic Gobry)
For a more comprehensive list, visit www.oss41ib.org.
Yet the state of OSS in libraries is more than sets of com-

puter programs. It also includes the environment where
the software is intended to be used—a socioeconomic
infrastructure. Put another way, any computing problem
can roughly be divided into 20 percent technology issues
and 80 percent people issues. It is this 80 percent of the
problem that concerns us here. Given the current net-

worked environment, the affinity of OSS development to
librarianship, and the sorts of projects enumerated above,
what can the library profession do to best take advantage
of the current milieu? This question was posed to the
OSS4Lib mailing list in April and May of 2000 and gener-
ated a lively discussion.6 A number of themes presented
themselves, each of which are elaborated upon below:

■ National leadership
■ Mainstreaming, workshops, and training
■ Usability and packaging
■ Economic viability
■ Redefining the integrated library system (ILS)
■ Open source data

National Leadership
One of the strongest themes mentioned was the need for
national leadership. It was first articulated by David
Dorman as the Open Source Library Network (OSLN).

Karen Coyle and Aaron Trehab elaborated on the idea by
suggesting that organizations such as ALA/LITA, DLF,
OCLC, or RLG help fund and facilitate methods for pro-
viding credibility, publicity, stability, and coordination to

library-based OSS projects. While OSS is almost always
driven by individuals, the individuals of OSS still need to
be provided with resources such as time, money, and
computer hardware and software. It is widely believed
that individualism can only go so far because after a time,
individuals lose interest and pass projects on to others.
Libraries are in it for the long term and cannot afford to

implement workflows based on software whose lifetime
is measured in "Internet years." National leadership, in
the form of institutionalized support, will make OSS in
libraries more of a reality much in the same way RedHat
has helped make Linux a viable operating system and the
World Wide Web Consortium (W3C), supported by MIT,
provides guidelines and standards for the Web.

Mainstreaming, Workshops, and Training

Along these same lines was the expressed desire for the

mainstreaming of OSS articulated by Carol Erkens, Rachel
Cheng, and Peter Schlumpf. This mainstreaming process
would include presentations, workshops, and training ses-

sions on local, regional, and national levels. These activities
would describe and demonstrate OSS for libraries. They
would enumerate the advantages and disadvantages of
OSS. They would provide extensive instruction on the

staffing, installation, and maintenance issues of OSS. This

mainstreaming process is an effort to promote and market
OSS as a viable means for implementing sustainable digi-
tal library collections and services.

Usability and Packaging

In its present state, OSS is much like microcomputer com-
puting of the '70s as stated by Blake Carver. It is very much
a build-it-yourself enterprise; the systems are not very
usable when it comes to installation. This point was echoed
by Cheng, who helped facilitate a NERCOMP workshop
on OSS. Schulmpf pointed to the need for easier installa-
tion methods so maintainers of systems can focus on man-
aging content and not software. Using OSS should not be
like owning an automobile in the '20s; you shouldn't nec-

essarily need to know how to fix it in order to make it go.
Packaging, and to a lesser extent, usability, are features

supported in software by commercial institutions. Again,
RedHat, a company distributing versions of the Linux

operating system, has made its money by making it easier
to install and maintain Linux-based computers. Microsoft
writes software intended to seamlessly integrate with
Intel-based computers. Microsoft's success is not based so

much on the features of its applications, but rather the way
the applications integrate with each other. The developers

POSSIBILITIES FOR OPEN SOURCE SOFTWARE IN LIBRARIES I MORGAN 13

of OSS, including the ones in libraries, would benefit from
similar installation procedures and integration processes.

Economic Viability

As pointed out by Eric Schnell and David Dorman, OSS
needs to be demonstrated as an economically viable
method of supporting software and systems. Libraries
have spent a lot of time, effort, and money on resource

sharing. Why not pool these same resources together to
create software that will satisfy our professional needs?
OSS cannot be equated with the homegrown systems of
the past—spaghetti code and GOTO statements should
be ancient history. More importantly, a globally net-

worked computer environment provides a means of shar-

ing expertise in a manner not feasible twenty-five years
ago. We need to demonstrate to administrators and fund-

ing sources that money spent developing software

empowers our collective whole. It is an investment in per-
sonnel and infrastructure. OSS is not a fad, yet it will not
necessarily become a complete replacement for commer-
cial software. On the other hand, OSS offers opportunities
not necessarily available from the commercial sector.

Redefining the ILS

There are many open source library applications available
today, and each satisfies a particular need. Maybe each of
these individual applications can be brought together
into a collective, synergistic whole as described by Jeremy
Frumkin, and we could redefine the ILS. Presently our

ILSs manage things like books pretty well. With the addi-
tion of 856 fields in MARC records they are beginning to

assist in the management of networked resources too, but
libraries are more than books and networked resources.

Libraries are also about services: reserves, reading lists,
bibliographies, reader advisory services of many types,
digitization, current awareness, reference, to name but a
few. Maybe the existing OSS can be glued together to
form something more holistic—a sum greater than its

parts.
OSS provides an opportunity for traditional library

vendors as described by Schnell. Instead of writing com-

puter programs, library vendors could support the docu-
mentation, installation, and integration of OSS for
libraries in exchange for a fee. Libraries would feel much
more comfortable with the applications running on their

computers if those applications did not seem to so much

beyond their control.

Open Source Data

OSS relates to data as well as systems, as described by
Thomas Krichel. The globally networked computer envi-
ronment allows us to share data as well as software. Why

not selectively feed URLs to Internet spiders to create our

own, subject-specific indexes? Why not institutionalize
services like the Open Directory Project or build on the

strength of INFOMINE to share records in a manner sim-
ilar to the manner of OCLC?

Systematically describing Internet-accessible informa-
tion resources with things like the Resource Discovery
Framework (RDF) provides the means of implementing
the Semantic Web. Libraries are about the collection,
organization, dissemination, and evaluation of data and
information for the purposes of facilitating knowledge.
These are the same principles behind the Semantic Web—
a tool for answering the perennial question, "Can you find
me more like this one?" The library profession purports to
excel at the classification of data and information. RDF

represents one way to accomplish this goal in a globally
networked environment. If we, as librarians, were to con-

tribute to the efforts of the Semantic Web, then we would
also be contributing to the efforts of open source data.7

Another way to contribute to the open source data

concept is to integrate ourselves into information creation
processes of our hosting communities. Libraries do not

exist in a vacuum. They are all a part of some sort of com-
munity. Each of these communities creates information
and increasingly makes it available in digital form. By
becoming a part of this process libraries may be able to

make the information more accessible to a wider audi-
ence over a longer period of time. Again, this is fostering
a concept of open source data.

■ Possibilities of OSS in Libraries

OSS presents many possibilities for libraries. First and
foremost, it presents an opportunity to take control of

library services and collections relying on computer soft-
ware. The time and effort spent buying (read "licensing")
software could be developed learning how to use the soft-
ware. Time spent developing our own solutions to prob-
lems develops staff expertise. OSS lowers the barrier to
this learning process because staff will not be limited by
such things as who is allowed to use the software; since
the software is freely given away, it is very easy to down-
load, install, give it whirl, and evaluate whether or not
more time should be spent on it.

Quality OSS rises to the top in the same way cream

rises to the top of fresh milk. OSS goes through an infor-
mal review process. This process has nothing to do with
market hype or self-promotion. Consequently, if you
identify a piece of OSS and you know of other people
using it, then you will know exactly what you are getting.
There should be no surprises. This presents itself as

another opportunity for libraries, not so much in terms of

library services or collections, but in the time spent eval-

14 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

uating products. In the words of Shiyali Ramarita

Ranganathan, "Save the time of the reader."8

Instead of feeling helpless about how our online cata-

logs work (or don't work), or instead of wishing for some
sort of software widget to "automagically" appear, OSS
provides a framework—possibilities for resource shar-

ing—in order to take control of our situation. We all have
similar problems, needs, and desires when it comes to

using computers in our libraries. If we were to take a

greater stake in the use of OSS, then we would be more

able to share our ideas among ourselves. This sharing of
ideas will bring more minds together and ultimately ere-

ate more robust solutions. Effective communication will
still have to take place, but that is where the leadership
comes into play. OSS does not solve communication prob-
lems.

OSS provides the means to give back to the Internet.

By contributing OSS to the community at large, others
will benefit from our experience. Similarly, if we, as a pro-
fession, contribute to the idea of open source data

through the systematic description of Internet resources,
then we will be helping people satisfy their information
needs. We will be bringing like things together for the
purposes of creating knowledge, not just gathering infor-
mation. While information has never been free, the

processes behind OSS can make it less expensive.

■ Conclusion

I am always excited about libraries and librarianship. The
discussions on the oss41ib mailing list exemplify some of
the opportunities for our profession. As Ben Ostrowsky
put it, "[yjears from now, this will be known as The Week
It All Came Together." We can hope so. Let's hope the
momentum can be sustained. Let's build on our

strengths, continue to pool our resources, and spend our

time, money, and energy on ways to improve our situa-
tion instead of bemoaning the perceived limitations. As
Gordon Paynter said, "These are social problems, rather
than technical." Let's explore our alternatives.

References and Notes

1. The ideas behind GNU software and its definition as artic-
ulated by Richard Stallman can be found at www.gnu.org/
philosophy/free-sw.html. Accessed Jan. 10, 2002.

2. I elaborated on the similarities and differences between
OSS and librarianship via a book review of The Cathedral and the
Bazaar appearing in Information Technology and Libraries 19, no. 2
(June 2000): 105. See www.lita.org/ital/1902_books.html#
anchor387677. Accessed Jan. 10, 2002.

3. The Cathedral and the Bazaar is also available online at

www.tuxedo.org/~esr/writings/cathedral-bazaar. Accessed Jan.
10, 2002.

4. As an interesting aside, read "Stalking the Wily Hacker"

by Clifford Stoll in the Communications of the ACM 31, no. 5 (May
1988): 484. The essay describes how Clifford tracked a hacker via
a seventy-five-cent error in his telephone bill. It is on the Web in

many places. Try http://eserver.org/cyber/stoll2.txt. Accessed
Jan. 10, 2002.

5. It is believed a past chairman of IBM, Thomas Watson,
said in 1943, "I think there is a world market for maybe five com-
puters."

6. An archive of the oss41ib mailing list is available at

www.geocrawler.com/lists/3/SourceForge/6067/0. Accessed
Jan. 10, 2002.

7. I personally think the ideas behind the Semantic Web are

very intriguing. For more information about this effort see

www.w3.org/2001/sw. Accessed Jan. 10, 2002.
8. Ranganathan's Five Laws of Library Science are: (1) books

are for use; (2) every book its reader; (3) every reader his book;
(4) save the time of the reader; and (5) a library is a growing
organism.

POSSIBILITIES FOR OPEN SOURCE SOFTWARE IN LIBRARIES I MORGAN 15

The Open Source ILS: Still

Only a Distant Possibility Marshall Breeding

One
of my main professional interests involves fol-

lowing the library automation industry. I main-
tain a Web site devoted to this topic and regularly

write about the companies and systems that comprise
this arena. So it is with great interest that I consider the
impact open source software (OSS) might make on this

industry. The open source movement could effect radi-
cal changes to libraries should it produce an integrated
library system (ILS) that earns a level of acceptance on

the same order that Apache did in the Web server mar-

ket. Like Apache, an open source ILS would have to

offer top-of-the-line features and performance to gain
acceptance over its commercial rivals.

My general approach to software, technologies, and
systems is initial skepticism. I've learned that the hype
about any new technology usually exceeds its practical
impact in the long term. My attitude toward OSS in
libraries is no different. While I appreciate its successes, I
also recognize its limitations. There is no doubt that Linux
and Apache represent a worldwide victory over high-
powered commercial opponents in the operating system
and Web server arenas.

1

I do not, however, expect to see such victories of OSS
over commercial products in the ILS arena. Both broad
historical and recent trends argue against a movement

toward libraries creating their own library automation

systems—either in an open source or closed development
process.

An undeniable trend in library automation involves a

movement toward vendor-supplied systems and away
from locally developed ones. Libraries large and small

recognize that they do not have the resources to develop
and maintain library automation systems. Some of the
recent examples that come to mind include:

■ Library of Congress: Adopted Endeavor Voyager to
replace several locally developed systems.

■ UCLA: Early implemented DRA Taos over their

locally developed ORION system.
■ Stanford University: Abandoned locally developed

BALLOTS system for SIRSI Unicorn.
■ Penn State: Converted from their locally developed

LIAS system to SIRSI Unicorn.

Other less prominent libraries that have left locally
developed systems for commercial systems include
Carelton University, Jefferson County (Colo.) Public

Library System, and the Fogelson Library of the College
of Santa Fe.

Marshall Breeding (breeding@library.vanderbilt.edu) is Library
Technology Officer for the Heard Library at Vanderbilt University,
Nashville, Tenn.

Very few large libraries continue to operate locally
developed library automation systems. The only two

ARL libraries currently running locally developed sys-
terns are the University of California at Berkeley and the

University of Texas at Austin. Neither of these locally
developed systems is open source. It should be noted,
however, that the development of these systems far pre-
dates the open source movement. One may well speculate
that had the open source movement been in place during
the period in which many libraries were creating library
automation systems, the current environment of reliance
on commercial systems would be quite different.

The complexity of library automations systems
exceeds the pool of available volunteer programmers.
Full-fledged ILS software can easily contain a million
lines of software code. Library automation companies
that have recently undertaken the development of a new
ILS have generally expended about five years of develop-
ment time with a team of thirty to fifty programmers. The
creation of a new ILS is a multimillion-dollar project. It is
hard to see that even a large collective of libraries would
have the available programming staff to develop and
maintain a large-scale ILS.

Preferred technology architectures evolve faster than
the development cycles of applications built upon them.
The history of technology has seen constant shifts in com-

puting models and architectures. Time-sharing host/ter-
minal systems gave way to client/server systems with
thick graphical clients. These gave way to an N-Tier archi-
tecture and Web-based clients. Some models prove to be
more long lasting than others. The ill-fated Taos system
comes to mind as one such example. CORBA and object-
oriented databases, the underpinnings of Taos that were
in the height of fashion when DRA's Taos system was

conceived, do not currently enjoy the same level of
respect. Even with massively funded, concerted develop-
ment efforts by commercial companies, a system is doing
well if its technical infrastructure is not obsolete by the
time the application is fully developed.

Even with teams of full-time development and sup-
port personnel, commercial companies often cannot keep
up with their library customer's expectations. Is it realis-
tic to believe that a cadre of open source developers
would have the available resources to keep pace with the

ever-rising expectations of libraries for system enhance-
ments and ongoing support?

The open source approach would posit that a world-
wide collaborative effort would bring about more satis-

factory software since it would be built for and by
libraries. Yet it is hard to believe that teams of program-
mers, working in a mostly voluntary mode throughout
libraries everywhere, would have the time allotment,
project management infrastructure, and other resources
needed for the concerted development efforts required to
build and maintain an ILS.

16 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

Libraries expect far more from their library automa-

tion vendors than software. In the current market of rela-

tively mature systems, each of which has achieved a high
level of core functionality, differentiating factors between

systems include quality of support, the vision of the com-
pany regarding broad technology and industry trends,
guaranteed continued development of the system relative
to evolving requirements, standards, and technology
architectures.

While there are numerous open source enthusiasts in
the technology and computer support units of libraries,
few library administrators have demonstrated interest in

taking on the risks and responsibilities of strategic
reliance on open source library automation systems. A
handful of programmers in libraries currently work on

open source projects in small blocks of time either offi-

daily or unofficially allocated. But it does not seem likely
that library administrators are ready to switch from pay-
ing license and support fees to commercial firms to pay-
ing for local development and support. Programmers are

expensive personnel. Libraries generally lack the ability
to fund adequate programming and technical staff in sup-
port of commercially supplied systems, much less toward
the development of new open source systems.

Most of the current open source ILS projects that I am
aware of can be characterized as relatively small-scale
efforts. Some rely on paid staff, others depend on volun-
teers. It is hard to see how a full-fledged scaleable ILS can

emerge out of the current projects. The open source ILS

projects that I have been tracking include: Avanti (www.
nslsilus.org/~schlumpf/avanti), OSDLS/Pytheas (http://
osdls.library.arizona.edu), Koha from Katipo Communi-
cations (www.katipo.co.nz), and OpenBook from the

Technology Resource Foundation (www.trfoundation.org).
The latter two systems show the most promise. Yet it is hard
to discern any significant trend of even small libraries

adopting these systems in favor of the small-scale systems
available from commercial vendors. OpenBook, which may
show the most promise, is still not ready for release and is
behind its initial schedule.

Several technical components that are useful to those
that build and integrate library automation systems and
other library software are available. Some of these open
source utilities include:

■ James, a Java API for MARC records;
■ YAZ, a Z39.50 toolkit;
■ ZAP, an Apache module for Z38.50;
■ XMLMARC, utility for converting MARC records to

XML; and
■ ZETA Perl, a Perl module for Z39.50.

My concluding observation in the ILS arena is that
none of the current library automation vendors have

expressed concern that their efforts will be usurped by
open source efforts. Their customer base continues to

grow and they each describe a long-term agenda of future
development. Libraries are buying more commercial soft-
ware, not less. While my idealistic side might like to see

libraries able to obtain automation systems without cost
in an open source arrangement, my practical observations
show little movement in this direction. As one who

closely follows the library automation industry, I can see

no paradigm shift approaching where commercial com-

panies yield to open source and free software.
While I've argued that an open source ILS does not

seem to be a realistic expectation, at least not in the near

future, I do see other significant opportunities for
libraries to take advantage of the open source model.

It is likely that OSS will impact libraries in non-ILS
arenas—which may ultimately be more important. The
recent interest in digital library initiatives present oppor-
tunities for OSS. The early software for the Open Archives
Initiative, for example, is largely OSS. As XML gains
ground in the library arena, it is also likely that a signifi-
cant body of OSS will arise.

We already see some inroads of OSS for libraries.
OCLC, for example, recently released the Java source

code to its SiteSearch toolkit for noncommercial use.

While OCLC determined that SiteSearch could not be
sustained in the usual commercial development and sup-
port model, it is willing to provide some level of help to

the community of librarians who want to build a future
for SiteSearch as a community source application
(because of the limitation not allowing commercial use of
the software, the SiteSearch license is not a true open
source license). OCLC also released their Pairs search

engine and several other tools under open source

licenses, and they appear to be interested in future open
source projects.

George Mason University has created the Open Source
Course Reserves (OSCR), an electronic course reserves system
designed for academic libraries (see http://timesync.
gmu.edu/OSCR).

Some commercial companies use open source compo-
nents within their systems and even contribute open
source modules. For example, epixtech indicates that they
will develop an NCIP interface in an open source license

arrangement.2
The opportunity for libraries to develop open source

applications in the digital library arena is narrow. One of
the major trends among ILS companies involves an inter-

est in creating products with broader information deliv-

ery, content integration, and resource sharing. It will be
interesting to observe whether open source applications
will be developed and survive in these areas that can

compete with the emerging commercial offerings.
For a list of resources related to OSS, visit the Library

Technology Guides (http://staffweb.library.vanderbilt.
edu/breeding/ltg.html), select the bibliography section,
and perform a subject search for "open source software."

THE OPEN SOURCE ILS I BREEDING 17

References and Notes

1. For an article affirming these trends, see David A.

Wheeler, Why Open Source Software/Free Software (OSS/FS)?
Look at the Numbers! Feb. 1, 2001. Accessed Feb. 17, 2002,
www.dwheeler.com/oss_fs_why.html.

2. Epixtech, Epixtech Announces Open Source Licensing
Plans for NISO CIP "Engine," Jan. 15, 2001. Accessed Feb. 17,
2002, www.epixtech.com/Is /press /2001 /9998.asp.

m LITA NATIONAL

FORUM
OCTOBER 10-13, 2002
HOUSTON.TEXAS

MAKING CONNECTIONS
Thoughtful general sessions, preconference workshops, and pragmatic concurrent
sessions on forging connections in today's library and information environment.

Visit the forum Web site for developments and details:

www.lita.org/forum02
Registration begins July 2002 and is limited to 500.

a tradition of the

Library and Information Technology Association
A division of the American Library Association

18 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

Anne Highsmith, Mark Jordan,
Eileen Llona, Peter E. Murray,

MARC It Your Way: MARC.pm and Edward Summers

MARC.pm (http://marcpm.sourceforge.net) is a piece of
open source software (OSS) developed by librarians for
librarians. In this article you will find a description of
what exactly MARC.pm is, followed by a series ofdescrip-
tive pieces written by librarians in thefield who have used

MARC.pm. Some of these descriptions contain program
code, which may baffle those who are not already familiar
with the Perl programming language, while other pieces
explore some of the intricacies of the Machine Readable

Cataloging (MARC) format that may be new to noncata-

logers. Ifat any time you feel overwhelmed know that you
are in good company, and keep in mind that the aim of this
article is simply to show how a piece ofOSS is being used

in different library environments.

In
short, MARC.pm is an open source Practical

Extraction and Report Language (Perl) module for

reading, manipulating, and writing USMARC data.
As is the case with most short answers, this description
glosses over several details that should be covered
before going into any examples of how libraries are

using MARC.pm.
First of all, for those not already acquainted, Perl is an

open source programming language created by Larry
Wall in 1984. Perhaps the best description of Perl is found
in the documentation that comes bundled along with Perl
itself:

Perl is a high-level programming language with an

eclectic heritage written by Larry Wall and a cast of
thousands. It derives from the ubiquitous C program-
ming language and to a lesser extent from sed, awk, the
Unix shell, and at least a dozen other tools and lan-

guages. Perl's process, file, and text manipulation facili-
ties make it particularly well suited for tasks involving
quick prototyping, system utilities, software tools, sys-
tern management tasks, database access, graphical pro-
gramming, networking, and World Wide Web

programming. These strengths make it especially popu-
lar with system administrators and CGI script authors,
but mathematicians, geneticists, journalists, and even

managers also use Perl. Maybe you should, too. 1

Perl's facility with text processing, database access,

and networking have also made it popular with librarians
around the world, as more and more library services and
information resources have been made available online.
Perl is one of the jewels in the crown of open source soft-
ware (OSS), and as such deserves the full attention of
another article (or book) to detail its use in libraries.

A Perl module is a set of related functions that are

packaged together into a library file that has an extension
of ".pm." A module provides reusable code that extends

Perl's core functionality by giving it extra powers in a

new field of expertise. For example, there are Perl mod-
ules for useful tasks such as logging into and interacting
with an FTP server or querying a relational database; and
for esoteric jobs such as converting dates from the Julian
to the Mayan calendar or interpreting genetic data.

Anyone can write a Perl module; in fact hundreds of peo-
pie have and made their modules publicly available in
the Comprehensive Perl Archive Network, or CPAN

(www.cpan.org). CPAN is a true virtual library and treas-

ure trove of useful software, which prevents program-
mers around the world from constantly recreating the
wheel. It is made possible in part by the professional pro-
grammers who monitor the quality of software placed
there, while ensuring that the archive's namespaces
remain sensible and coherent.

Most library professionals have some familiarity with
the MARC data format that is used to encode biblio-

graphic data. Catalogers in particular have detailed

knowledge of the various fields that make up a MARC
record, such as the 100 field for an author, the 245 field for
a title, and the 650 for a subject heading. Figure 1 is a typ-
ical example of a single MARC record.

Some library professionals may not be aware that
MARC data is shuttled around on the Internet every day
between individual libraries and institutions like OCLC,
RLIN, and the Library of Congress (LC); and that the trans-
mission format for MARC records is quite complex. Figure
2 is the MARC record above in transmission format.

Much of this complexity paradoxically arose out of
the need to make bibliographic data rigorous and com-

pact enough to be efficiently processed by computers
back in the late 1960s when the MARC data format was

developed (as processing power and disk space were lim-
ited). As a result it is not a simple task for a programmer
to create software that processes MARC data.

Which leads us back to MARC.pm. MARC.pm is a Perl
module that extends Perl's already useful text processing
abilities to make it easy for Perl users to write programs
that modify and create MARC data. MARC.pm contains
functions to read in USMARC data; to add, remove, and

Anne L. Highsmith (AHIGHSMI@lib-gw.tamu.edu) is Consortia
Systems Coordinator at Texas A&M General Libraries, College
Station. Mark Jordan (mjordan@sfu.ca) is Librarian/Analyst at
Simon Fraser University, Burnaby, B.C., Canada. Eileen Llona

(ellona@u.washington.edu) is International Studies Computer
Services Librarian at the University of Washington, Seattle.
Peter E. Murray (pmurray@law.uconn.edu) is Computer
Services Librarian at the University of Connecticut Law School,
Hartford. Edward Summers (ed@cheetahmail.com) is a

Software Engineer with CheetahMail, New York.

MARC IT YOUR WAY I HIGHSMITH, JORDAN, LLONA, MURRAY, AND SUMMERS 19

modify fields; to search through your data; and to save

MARC data. Perl excels as a glue language for its ability to
marshal different toolsets and data sources when solving a

problem. MARC.pm is designed to make Perl even more

useful for librarians. Below you will find four case studies
that show how MARC.pm has been used.

■ Editing Electronic
Resource Holdings

At Texas A&M University (TAMU) the MARC.pm mod-
ule has been used to edit bibliographic and holdings
records that represent electronic resources. If a biblio-

graphic record contains a URL in MARC field 856, that
URL appears as a clickable link in the library's Voyager
catalog. It is therefore critical that such bibliographic
records have valid URLs in order to guide patrons to elec-
tronic resources. As for holdings records, the library
recently decided to class nongovernment document elec-
tronic resources in the LC classification system rather
than class them with a generic call number. In this latter

case, it was necessary to extract the LC call number from
the bibliographic record and place it in the holdings
record.

TAMU's first experience with the MARC.pm module
arose from a need to edit the serial bibliographic records
added to the catalog when the library began participating
in the Pricing Electronic Access to Knowledge (PEAK)
project in the spring of 1998. At that time it was decided
that separate bibliographic records would be used for the
PEAK electronic serials. Bibliographic records were

downloaded from OCLC and uploaded into the library's
NOTIS system. Reference staff at TAMU decided that the
URL in the bibliographic record should be designed to

take the user to the PEAK project page at the University
of Michigan rather than directly to the individual serial
title in order to facilitate statistics gathering. Cataloging
staff, therefore, cut and pasted the same URL into each of
the PEAK serial bibliographic records.

As catalogers were adding bibliographic records for
the PEAK serials to the catalog, the library webmaster
was adding the same titles to a Web page that contains a

complete listing of all electronic resources, including seri-

als, to which the library subscribes. This Web page is
known as the Public Access Menu (PAM). When a user

clicks on the PAM, he or she is taken to a special page con-
taining a copyright statement, any special access instruc-
tions and information, a link to the desired resource, and
a link to a problem-reporting system that allows the user

to report access problems with a resource. Once the user

clicks on the link to the desired resource, he or she is con-
nected to the serial title or database represented. The base
URLs that support the PAM are stored in a SQL server

000 00897pam 2200277 a 4500

008 860317s1986 nyu b 001 0 eng
020 $a068806499X
050 00 $aP211$b.L73 1986
100 1 SaLogan, Robert K.,$d1939-
245 14 $aThe alphabet effect :$bthe impact of the phonetic
alphabet on the development of western civilization /ScRobert
K. Logan.
250 $a1sted.
260 $aNew York :$bMorrow,$cc1986.
300 $a272 p. ;$c22 cm.

504 SaBibliography: p. 249-265.
500 $alncludes index.
650 0 SaAlphabet$xHistory.
650 0 $aWriting$xHistory.
650 0 $aCivilization$xHistory.

Figure 1. Sample MARC Record in Interpreted Format

00629pam 2200193 a

45000050017000000080041000170200015000580500020000731
00002900093245012600122250001200248260003200260300002
10029250400300031350000200034365000230036365000220038
6650002700408-20011105081147.0-860317s1986 nyu b
001 0 eng - a068806499X-00aP211b.L73 1986-1 aLogan,
Robert K.,d1939—14aThe alphabet effect :bthe impact of the
phonetic alphabet on the development of western civilization /-
cRobert K. Logan.- alst ed.- aNew York :bMorrow,cc1986.-
a272 p. ;c22 cm.- aBibliography: p. 249-265.- alncludes
index.- OaAlphabetxHistory.- OaWritingxHistory.- OaCivilization-
xHistory.-

Figure 2. Sample MARC Record in Transmission Format

database; the actual link is generated on the fly by an ASP
script when the user clicks on the link. When the PAM
was first started, there was no integration between the
electronic resources in the library catalog and the
resources listed in the PAM. For example, the catalog
record for the serial title Soil and Tillage Research would
have contained the following MARC field: 856 7_ I u

www.umdl.umich.edu/peak/index.html. This took the
user directly to the PEAK project page at the University of
Michigan, whereas the PAM contained the link http: / /
library.tamu.edu/resources/ASP/track.asp?resource=
Soil+and+Tillage+Research, which takes the user to the

copyright page where there is another link that leads to

the page for that specific title.
By the spring of 2001 the switch from the PEAK proj-

ect to Elsevier ScienceDirect had rendered the PEAK URLs
in the bibliographic records invalid, so it was necessary to
correct those URLs in order to direct patrons to the appro-
priate Web pages for the electronic serials. The biblio-

graphic records were edited using the Perl MARC.pm

20 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

module so that cataloging staff did not have to do record-

by-record corrections. In addition, it was decided that it
would be most beneficial to patrons to integrate the bibli-

ographic records with the PAM by inserting a PAM-style
URL in the bibliographic record. This meant that the user

would be taken to the TAMU copyright page and given an

opportunity to report problems with accessing each of the
resources. It also increased the likelihood that the library
could collect statistics on individual title use, since the
PAM counts each click on each of its resources.

An SQL query run against TAMU's Voyager database
identified the target bibliographic records, which were

then exported using the Voyager export utility. The
MARC records were edited via a Perl program that made
extensive use of MARC.pm and reloaded into the catalog
using the Voyager import utility. The bibliographic
records for the PEAK serials required five corrections: (1)
changing field 008/22 (Form of original item) to 's/
meaning electronic serial; (2) changing "PEAK
Information Service" to "Elsevier ScienceDirect" in field
538; (3) deleting field 710 for "PEAK Information
Service"; (4) deleting the PEAK 856 field and inserting a

PAM-style 856 field; and (5) adding field 949 to log the
nature and the date of the batch update via Perl.

Resetting 008/22 to's' for electronic serial was very
simple, using the unpack_008 function, changing the

resulting 'Form' hash value, and restoring the 008 using
the pack_008 function. Changing PEAK Information
Service to Elsevier ScienceDirect in field 538 was also rel-

atively easy, using simple string substitution techniques,
as was adding field 949 to log the date and the nature of
the change made in the bibliographic record. Deleting the
710 field that referred to PEAK (but only that specific 710

field) was somewhat trickier, requiring that the program
loop through an array of references to 710 fields, checking
each one to see if it was the PEAK 710, and eliminating
the PEAK 710 if encountered. The most difficult task was

extracting the title proper from the 245 field and editing it
to match the form of the URLs in the PAM to construct a

PAM-style URL for the 856 field. The PAM URLs had
been set up with a fairly standard syntax, but one that
was very different from cataloging syntax. The general
rules for constructing the PAM URLs are: convert spaces
to '+'; convert special characters such as '/ to their html-

escape equivalents; and capitalize the first letter of each
word. In addition, it was necessary to delete any charac-
ters from the 245 field that were not part of the 127-byte
ASCII alphabet.

The title Journal of Physics. A, Mathematical and general
exemplifies many of the problems encountered in this

translation. This title would appear in a MARC biblio-

graphic record as: 245 00 |a Journal of physics Jn A: J;p
Mathematical and general. The PAM form of this title is:

Journal +Of+Physics +A%3A+Mathematical +And
+General. The greatest difficulty came in extracting the

title proper, which would be tagged as 245 fa and its sub-

sequent fn and fp subfields, since theoretically there can

be an unlimited number of fn and fp subfields and they
can appear in any order, such as, fa fn fp or fa fp fn or

fa fp fp. The rest of the editing was accomplished using
standard Perl string manipulation techniques.

All the PEAK bibliographic records were run through
the Perl program. Following this, the newly constructed
856 fields were compared to a list of PAM URLs for
Elsevier ScienceDirect titles to determine if they matched.
If the PAM-style title devised for the 856 did not match the
PAM title exactly then the user would receive a "page can-
not be displayed" error if he or she clicked on the 856 in
the OPAC. Once the bibliographic records with successful
matches were identified, they were freshly extracted from
the production database, edited as described using the
Perl program, and reloaded into the database. Of the 529

bibliographic records that had contained URLs referenc-

ing the PEAK project page, it was possible to construct a

correct PAM-style URL for 456. The nonmatches were due
to absence of a particular title from the PAM or inconsis-
tencies in the PAM URL. For example, the webmaster's

general rule in constructing PAM URLs was to convert '&'
to its html-escape equivalent of '%26amp%3B,' so that
conversion was encoded into the processing for the 245
field. However, in the case of Soil and Tillage Research, the
PAM URL is Soil+And+Tillage+ Research.

A similar procedure was followed for the second proj-
ect utilizing MARC.pm, that of changing a generic call
number in the MARC holdings record for an electronic
resource to an LC call number. Target records were again
identified by running an SQL program against TAMU's
Voyager database. This second target group consisted of
all holdings records that contained the generic call num-
ber "Go to URL" and their associated bibliographic
records. Once identified, the bibliographic and holdings
records were exported using the Voyager export utility. In
general this project was simpler than the PEAK program,
but did involve one interesting complication—the need to
deal with two MARC record types, bibliographic and

holdings. The goal of the program was to extract an LC
call number from the bibliographic record if one was

available and then add it to the appropriate holdings
record, deleting the "Go to URL" call number from that

holdings record in the process.
The first step of the program was to identify the

record type using the unpack_ldr function and checking
the resulting 'Type' hash value. If it was a bibliographic
record, the 050 fields and 090 fields, in that order of pri-
ority, were extracted. The bibliographic record was then
written to the output file and the next record checked. If
the record was a holdings record and it contained 852 Jh
Go to Ji URL, the new call number was added to the 852

Jh or 852 Jh Ji, depending on which subfields were avail-
able from the bibliographic 050 or 090. Finally, a J;m

MARC IT YOUR WAY I HIGHSMITH, JORDAN, LLONA, MURRAY, AND SUMMERS 21

Electronic was added at the end of the 852 field using the

insertpos function. This subfield was added at the request
of reference staff to differentiate these electronic resources
from their print counterparts. Care must be exercised in

using insertpos, since it apparently assumes that the sub-
fields in MARC fields appear in alphabetical order and
makes its insertion into a field at the first position that the
inserted subfield would fall alphabetically. This worked
for inserting |m after the final or Ji in these records but
would not work in all cases, since MARC subfields are

not strictly alphabetical within fields. Once the holdings
record was edited it was written to the output file, which
was then uploaded into Voyager using its batch import
utility. This process allowed the library to reclassify more
than 750 records for electronic serials without catalogers
having to perform tedious record-by-record editing.

get the date in YYYY-MM-DD format

$date = sprintf(
'%4.4d-%2.2d-%2.2d\
(Iocaltime0)[5]+1900,
(Iocaltime0)[4]+1,
(Iocaltime0)[3]

);

add the 590 field

$x->addfield({
record => '1
field => '590',
11 => '0*,
12 => '0',
value => [a => "netLibrary insertion $date"]

});

Figure 3. Inserting a Marker Field

■ Working with netLibrary Records

At the beginning of the 2001-2002 academic year, the

University of Connecticut purchased access to approxi-
mately four thousand netLibrary titles through the local
OCLC provider. The school of law, as part of the

University of Connecticut campus network, has access to

all of the titles. While the main campus library loaded all
of the titles into their catalog, only a subset of records
were appropriate for the law school catalog based on col-
lection development practices.

Using a Perl program with the MARC.pm module,
each record in the netLibrary-supplied MARC files was

examined for possible inclusion in the catalog. Based on a

regular expression match of the LC call number, an item
was selected for loading in the local catalog. Of the four
thousand MARC records, 106 matched the selection crite-
ria. Several local edits on the records were required before
loading them into the ILS.

It was decided to insert a marker field into the record
so that a list of the netLibrary records could be created in
the ILS for further future processing (see figure 3).

Because of the indexing rules in the law school cata-

log, the call number needed to be copied from the 050 to

the 090 field (see figure 4).
Public Services staff also determined that the public

display tag in the 856 field was too cumbersome, and rec-

ommended it be replaced by a clearer label. MARC.pm's
as_string() method allows you to dump the contents of a
MARC record into a variable, do transformations on it,
and then read the variable back as a MARC record with
the from_string() method (see figure 5).

Other edits were performed, including adding fields

specific to the INNOPAC catalog for automatically setting
the location and material type codes. The selected, modi-
fied netLibrary records are stored in a single MARC file,

($subfield_a) = $x->getvalue({
record => '1
field => '050',
subfield => 'a'

});

($subfield_b) = $x->getvalue({
record =>'1',

});

field
subfield

$x->addfield({
record
field
value

});

=> '050',
=> 'b'

=> T,
=> '090'},
=> [a => $subfield_a, b => $subfield_b]

Figure 4. Copying the Call Number Field

which is subsequently loaded in the law school ILS as a

batch of records.
The author of this Perl program initially had difficul-

ties working with the MARC.pm module, finding that
some of the method names were not intuitive or sug-
gested a different function. For instance, in the first exam-
pie above the getupdate() method suggests more than just
a retrieval of field values.

In the great Perl tradition, MARC.pm provides more

than one way to accomplish the same task. For instance,
to modify a field value, one can get a copy of a field,
change it, and save it to the MARC object instance using
getupdate()/addfield() methods, or one can write the
entire MARC instance as a string and modify it using
regular expressions, as in the last example.

There are also at least two ways records can be
selected to match the call number criteria. An early ver-

sion of this program loaded the entire MARC file into the

22 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

this will be new subfield z in the 856 field
$new_sub_z = 'Access an electronic copy of this book.';

get the contents of the first record in our MARC.pm object as
a string
$string = $x->[1]->as_string0;
perform a regular expression substitution to replace existing
subfield z with out new one

$string =~ s/A (
856\s # 856 fields...
.As # with any indicators

.*\c_z) # everything before subfield z

[A\cJ+ # ignore the existing subfield z

(.*)$ # capture what's after subfield z

/$1 new_sub_z2/xm; # replace subfield z with new one

recreate record one from the transformed string
$x->[1]->from_string($string);

Figure 5. Transforming the 856 Field

MARC.pm object and selected records using the search-
marc() method. When using this method, the program-
mer must load the entire MARC file into memory using
the 'increment=>-l' option. This option can use vast

amounts of memory, and for that reason it was aban-
doned in favor of the incremental method. That method
reads in one record at a time using the nextrec() method
in a while loop.

The complete version of this program along with the
documentation on its use can be found at www.pandc.
org/peter/work/projects /parseNetLibrary.html.

pass command. These control characters must be
removed before the data can be handled via MARC.pm.

MARC.pm is used to pull out specific fields from each
record. Our project uses the title (245), publication data
(260), and notes fields for chapter information (505). There
are anywhere from thirty to fifty records per year, with
each record containing ten to thirty chapters. Thus, for a

year's worth of data, there are up to fifteen hundred
records representing chapters and book titles. The Edited
Works list goes back to 1988, so the project will potentially
include fifteen thousand records.

The following code runs through a file of downloaded
records, counts them, and prints out the 245 field. A loop
uses the number of records count to iterate through the
file. A sample of the downloaded MARC file loops can be
seen in figure 6.

A sample line of the resulting file looks like this:

Alienation or integration of Arab youth: between fam-
ily, state and street/<TAB>edited by Roel Meijer.
<TAB>2000.<NEWLINE>

Obtaining specific data from the MARC records is rel-

atively straightforward using the MARC.pm library of
functions. Some understanding of arrays and loops is
needed to fully utilize some of these functions (such as

searchmarc), although this learning curve is not too steep.
Basic books on Perl provide enough information to begin
the project. The ability to pull selected fields out of the
MARC record, combined with the power of regular
expression searching in Perl, allows for much flexibility in
creating a searchable text file or database.

■ Using MARC Data in a Web

Application
The University of Washington Libraries prepares the
Edited Works and Collections on the Middle East for the
Middle East Studies Association. Catalog records for
items pertaining to the topic are identified in the RLIN

system and enhanced with table of contents notes in the
505 field. Perl scripts are used to export the MARC
records into field-delimited text files. These files are then
utilized in a Web-based program that allows searching of
words with diacritics, which are heavily used in the cata-

log records. Search points include title and author words
from both the book and chapter titles, author browsing,
and publication year.

Records are downloaded from RLIN to a local disk

using the pass command. The export from RLIN pro-
duces MARC formatted records, which include leader
information as well as the MARC tagging. Downloading
several records results in a one-line file. However, extra-
neous control characters often show up using RLIN's

■ Jake and Jake2marc

The Jointly Administered Knowledge Environment (jake)
(www.jake-db.org) is an open source project that assem-
bles information about databases of full-text electronic
serials and makes that information available for reuse in
a number of ways. It is used most often by reference
librarians and library users to find out where a serial title
is indexed, to what extent the coverage in a particular
database for that title is, and to find out where full text for
a serial title is available.

One of the most interesting things about jake is that it
allows the information it contains to be used in many dif-
ferent ways (as long as those ways comply with the GNU
Public License). In this respect, jake is not only open
source, it is open data as well. This means users can

extract information about electronic serials from jake and
use it locally or repackage that information for a variety
of purposes.

A Perl script that uses the MARC.pm module to create

simple, standard MARC records for full-text titles

MARC IT YOUR WAY I HIGHSMITH, JORDAN, LLONA, MURRAY, AND SUMMERS 23

create a new MARC object from file marc.dat

$x=MARC->new("marc.dat","usmarc");

marc_count is a MARC.pm function that tells you how many
records are in your file. The number of records is used for
looping later on

$numrecs=$x->marc_count();

loop through the file while printing out the selected
fields and subfields (245 and 260 in this example),
with a tab character in between, and a newline at the end

for ($i=0; $i<$numrecs; $i++) {
print

$x->getvalue({
record
field
subfield

}).

"\t",

$x->getvalue({
record
field
subfield

}),

"\t",

$x->getvalue({
record
field
subfield

}).

=> $i,
=> '245',
=> 'a'

=> $i,
=> '245',
=> 'c'

=> $i,
=> '260'
=> 'c

"\n",

Figure 6. Creating Tab Delimited Data from MARC

described in jake is called jake2marc. Within jake's list of
databases (see figure 7), users can simply click on the
"download as MARC" link, which leads them to the

jake2marc utility.
A number of options, such as which fields to include,

what to use as MARC subfield indicators, and what local
notes to include in the records are offered by jake2marc
(see figure 8).

After choosing the desired options, the user submits
the Web form and a few moments later is presented with
a link to the MARC communications file, as well as (if the
user has asked for it), a human-readable ASCII represen-
tation of the MARC records.

Taking the options indicated in the Web form,
jake2marc retrieves the information it needs from jake
using the Perl LWP module, which can retrieve a file from
the Web using a simple HTTP GET request. This informa-
tion is in roughly the same format as that retrieved if

F»e E* IN loo# be#

isl
D

v -0 - <31 g) <3 j $So«ch Gy|F«vertO(j 55$ " -9
Atfdrru j$] http^/vmwxke db.org/doct/db#* p*» j f*S (■ H

Jointly administered knowledge environment

search - databases • news - docs - download - how to help - lists

jake: the database list

Al links betowwiH lead to e jake search for a specific item, except for the "MARC" links, which query Mark Jordan's exce8entjake2marc.pl
web interface This win enable you to create a batch of simple USMARC records for the fuft-text journals in any of the databases listed in
jake. jake2marc.pl is free software; see Marks iake2marc ol oaoe for more information

Click on any database title or (provider name) to see its jake record,
f jakeid name provider download

1 10667 ABMNTORM

2 9582 ABMnform

3 20578 ABKNFQRM Otoai

4 20579 AS/INFORM Research

5 20580 ABMNFOaM Selea

6 22703 Academe Ai>3racts FuHTEXT EHe

OCLC

Ovid S MARC
s delimit*

s MARC
s delimit*

s MARC

FBSCO Industries

as MARC -

as delimited text

as MARC -

n-rriffwjsr

Figure 7. Jake Database List

pit Favorites Joe*} tJefe

***** ' H j) $ aswKh jap***** -J -J 3 £

Source of data

jake-db org r jakelibsfuca

Leader

Position 17

Value | a Language mek It-NolapptafctaJ

"Blank," for all field# (Leave empty for value s. blank) |
660 subtleWs [£

Include? Field

P 245 indicator 2 ("Number erf nonfiling characters')

v«u.

lAAn.TN.La.Le.LDet.Dat.Die

Sep®ate articles with commas Uncheck box at left for default value of '0* for aK records

245 subfield h ("Medium') ([compute'his]

|590^j subfield a ("Local note')

Suggestion You can use a local note to enable easy deletion erf records When updates
from jake become available, delete aB records with a public note containing the jake O in
question, and men create and upload the new batch

(http://3«*e-db.otg/) ti<

U»c tot ASX/XNTOM Ciobt

Ijadceid 20578; j«k«2suu:c

-

rrr

Figure 8. Jake2marc Options Form

someone clicks on the "delimited text" link in the jake list
of databases illustrated in figure 7. Once the delimited file

describing the database is retrieved, jake2marc reads each
line, which represents a serial record, creates a MARC
record for the title, and then adds the record to a MARC
communications file.

For each record, jake2marc creates the following
MARC fields: 022 (ISSN), 050 (LC call number), 082

(Dewey call number), 245 (title statement; subfields a and
h only), a local notes field (5XX; user can choose exact
field number), and 650 (local subject headings). The last
field, 650, is local because jake doesn't distinguish
between the various types of subject headings (personal

24 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

name, corporate name, geographic name) that have spe-
cific MARC field numbers. At the same time, jake2marc
also creates an 856 field (electronic location and access)
that holds the URL of the full-text. In addition to these

title-specific fields, each MARC record also has the

required record leader.

Upon its release, jake2marc generated a lot of interest
on the mailing lists over which it was announced. Many
catalogers, seeing the need to be able to generate simple
copy cataloging for e-serials in aggregated databases,
made a number of suggestions that were incorporated
into incremental versions of the script.

■ Conclusion

Hopefully these examples have illustrated how a piece
of OSS is being used in a variety of library settings. If
your curiosity is piqued, more case studies, plus full
documentation and the module itself are available
from the MARC.pm homepage at http://marcpm.
sourceforge.net. It is important to note that the Perl41ib
discussion list, www.rice.edu/perl41ib, played a crucial
role in the development of MARC.pm. The discussion
list was started by Charles McFadden (Virginia Institute
of Marine Science) in 1999 and is currently maintained

by Chuck Bearden (Rice University). Perl41ib brought
the developers into contact with each other, allowed
them to work together remotely at the cost of an

Internet connection, and provided a mechanism for

connecting the project with the wider world of librari-
ans interested in using Perl. Perl41ib is a forum for dis-

cussing all things Perl (not just MARC.pm), so if you
are interested in learning more about Perl and its appli-
cation in libraries, or exploring new projects with peo-

pie like yourself, please visit the Web site, subscribe,
and join the conversation.

Reference

1. Perlfaql, General Questions about Perl, Revision: 1.23,
May 23, 1999. Accessed Jan. 10, 2002, www.perldoc.com/
perl5.6/pod/perlfaql .html.

NEW DISTANCE LEARNING
DEGREE PROGRAM

Master of Library
and Information Science
The University of Washington
Information School's Distance
Master of Library and Information
Science (D.M.L.I.S.) program was

established to meet the high
demand for trained librarians and
information professionals. Delivery
of instruction is primarily Internet-
based, with a brief quarterly
campus residency. Students can

earn the degree while still residing
in their current location.

Apply now for Autumn Quarter 2002

For additional information, visit
www.ischool.washington.edu/dmlis

call 206-543-1794, or e-mail info@ischool.washington.edu

MARC IT YOUR WAY I HIGHSMITH, JORDAN, LLONA, MURRAY, AND SUMMERS 25

If you have been searching for an easy way to authority control your
library's current cataloging, try Eft'sAuthority Express service.

WithAuthority Express, a library uses the Internet to transmit a file of

newly cataloged bibliographic records to LTI (via ftp). LTI immediately
processes the records through its state-of-the-art authority control system.
Then, at the library's convenience, it logs into LTl's ftp server to retrieve

fully authorized catalog records, along with linked LC name and subject
authority records.

Authority Express
• Keeps authority control current at an affordable price
• Integrates easily into existing workflows
• Lowers cost by reducing staff time spent on catalog maintenance
• Provides 1 hour turn around for up to 1,000 catalog records

"Authority Controlfor the 21st Century"

Library Technologies, Inc.
2300 Computer Avenue, Suite D-19 Willow Grove, PA 19090

(215) 830-9320 Fax: (215) 830-9422
(800) 795-9504 email: LTI@LibraryTech. Com

Visit our website at:

www.LibraryTech.com

The EOR Toolkit:
An Open Source Solution
for RDF Metadata Harry R. Wagner

Despite its unprecedented growth in popularity, the Web
has failed to live up to expectations regarding its useful-
ness as a research tool. Technology has not kept pace with
the growing number of Web sites. Libraries, the recog-
nized experts in research and information management,
have been unable to take an active lead in solving this

problem. A solution is proposed, using the Resource

Description Framework (RDF), an evolving metadata

standard, in a collaborative open source environment that

will enable libraries to take a more active role in the devel-

opment ofapplications and services focused on improving
the discovery and management of electronic resources.

In
little more than a decade, the Web has become the

research tool of choice for many, if not most, library
patrons. The amount of information available on the

Web, and the ease and speed with which it can be pub-
lished and made available, offers enormous potential. It
also presents a serious challenge for libraries with

regards to the discovery, reliability, relevance, and accu-

racy of search results. Libraries need technical solutions
to balance the enormous, but flawed, potential of the
Web with the dependable service their patrons have
come to expect.

Although libraries have long been recognized as

experts in research and cataloging, the rapid pace at

which information technology (IT) is changing and the
limited IT budgets of most libraries have prevented them
from taking a lead role in the evolution of the Web. It is

increasingly difficult for libraries to become, and remain,
knowledgeable of existing and emerging ITs. This is espe-
daily true for libraries with limited or no technical staff.

The discovery and information management of the
growing volume of Web sites and other electronic
resources is a task that will require the skills of profes-
sional librarians. Libraries need solutions that will enable
them to take a more active role in the development of
applications and services focused on the discovery and
information management of Internet resources.

This paper presents a collaborative approach to solving
these problems that relies on open standards and open
source software (OSS). The library community has a long
history of collaboration with, and a well-known respect for,
open standards. These can be leveraged within the open
source community. By pooling ideas, functional require-
ments, and technical skills, libraries can use their expertise
to shape the Web in a way that makes it more reliable, and
that benefits the library community as a whole.

This article will introduce RDF and describe how it is

being used to solve many of the problems associated with
Web search engines. RDF is an open standard metadata

recommendation for the Web. It provides a framework for

describing resources using machine-understandable
semantics that enable the automated discovery, manage-
ment, and exchange of metadata.

The Extensible Open RDF (EOR) Toolkit will be pre-
sented as an example of the type of OSS that is being used
to create applications focused on the discovery, naviga-
tion, and management of RDF metadata. EOR is an open
source project and is built entirely upon open standards.
An overview of the open source distributions used to

develop EOR will also be presented.

I RDF
The Semantic Web Activity is a project underway at the
World Wide Web Consortium (W3C). Its goal is to bring
meaning, structure, and organization to the Web in a way
that enables the automated discovery, understanding,
and exchange of Web pages and other Internet resources.

1

RDF is a metadata recommendation of the W3C and
one of the key technologies in the Semantic Web Activity
project. 2 It is an open standard XML application (though
not limited to XML) and provides a framework that
enables a number of important improvements in the
information management of Web sites and other elec-
tronic resources. These include:

■ machine-understandable semantics that will enable
the automated discovery, management, and exchange
of Web sites and other Internet resources;

■ finer granularity and improved precision for resource
discovery; and

■ interoperability of different metadata vocabularies

using a common syntax.
Web search engines, while much improved from a few

years ago, continue to catalog only a small portion of the
Internet, produce results that are sometimes irrelevant,
are often inaccurate, or are missing altogether (such as,
broken links).

Search engines are limited by a number of factors: the

technology being used, the amount and quality of meta-
data available, and the sheer size of the Internet. They fall
into two broad categories: crawler-based and directory-
based. The main difference between the two is the
method used to harvest the data.

Harry Wagner (wagnerh@oclc.org) is a Senior Consulting
Systems Analyst with the OCLC Office of Research and the
Dublin Core Metadata Initiative, Dublin, Ohio.

THE EOR TOOLKIT I WAGNER 27

Crawler-based engines, such as Google, AltaVista,
and HotBot use automated processes known as Web
crawlers (sometimes referred to as spiders or bots) to

"crawl" the Web searching for resources. They index the
metadata and text found at each resource. The problem
with this approach is that the vast majority of resources
available on the Internet are written in HTML. These
resources are meant to be understood by humans but not
by such application processes as crawlers. This results in

inaccurately indexed resources and is why search results
often include inaccurate or irrelevant hits.

Directory-based search engines, such as Yahoo! and
DMOZ, use manually created catalogs. These catalogs
consist of Web sites that have been submitted by the site
administrators or have otherwise been discovered. They
have a much higher degree of accuracy and relevancy
than do crawler-based engines but produce a much
smaller result set because of the manual effort involved
and the size of the Internet.

Sizing the Internet, a study released by Cyveillance,
reported the existence of 2.1 billion unique publicly acces-

sible Web pages.
3 This number is expected to double by

early 2002. The sheer size of this number will soon dictate
that resource discovery and cataloging be automated.

RDF addresses these problems by providing a frame-
work that enables the automation of both the discovery of
resources (like crawler-based engines) and the ability to

intelligently index resources (like directory-based engines).
RDF accomplishes this through the use of machine-under-
standable semantics. RDF metadata are specifically
designed to be understood and exchanged by automated

processes, such as user agents and search engines.
RDF improves resource discovery by providing a

higher degree of precision to search results than do cur-

rent search engines. For example, an RDF request for "all
resources written by Stuart Weibel in 2001" would pro-
duce a result set that is both succinct and completely rele-
vant. This is not possible with existing search engines such
as Yahoo! or Google. These types of applications would

produce a large number of inaccurate and irrelevant
results due to their use of text-based indexing and their
limited user interface. RDF syntax uses semantics that are
machine-understandable and that enable even more

sophisticated compound searches. Consider, as an exam-

pie, the RDF request for "all resources coauthored by
Stuart Weible and Eric Miller between the years 1998 and
2000 that contain the word metadata in their title." This

degree of accuracy is possible because RDF provides
meaning to the metadata.

Rather than attempting to define a metadata vocabu-

lary that could be used to describe all resources, RDF
builds on the established work of various resource com-
munities by enabling the use of existing metadata
vocabularies within those communities (for example,
Dublin Core). This enables different communities to

describe and share resources with their own unique
vocabularies, using a common RDF syntax.

RDF accomplishes this with a simple syntax consist-

ing of a resource and a number of assertions about that
resource. A resource in RDF terms is anything that can be
described with a uniform resource identifier (URI). A URI
is a unique identifier, similar to a uniform resource loca-
tor (URL). It can be anything. It does not have to be
resolvable, but it must be unique. This enables RDF to be
used to describe electronic resources and anything else
that can be uniquely identified.

Resources and assertions about resources form sim-

pie triples, called statements, which are the foundation of
the RDF syntax. Statements are always comprised of a

subject, a predicate, and an object (predicate value). The
subject and the predicate must both be resources. The

object can be either a resource or a literal (a character

string).
RDF uses the XML namespace facility to qualify

resources. This prevents element name collisions that
could arise whenever multiple vocabularies are com-

bined. The namespace facility is also used to identify the
RDF schema. The RDF schema differs in both syntax and
intent from XML schemas and is what enables RDF to

provide meaning to the elements comprising different
vocabularies.

For example, a simple assertion, using the Dublin Core
vocabulary, would be: Harry Wagner is the author of the
Web site http://eor.dublincore.org/eor-install.html. This
can be visualized as follows in figure 1.

An in-depth discussion of RDF is beyond the scope of
this paper. However, the basic principle of defining asser-

tions using triples that are comprised of resources and lit-
erals is key to understanding RDF. This, hopefully, is

enough of an explanation to allow the reader to grasp its
enormous potential.

I EOR
Application Overview

EOR is an open source project, developed by the OCLC
Office of Research (http://oclc.org/research) and the
Dublin Core Metadata Initiative (http://dublincore.org).4
Its goal is to facilitate the rapid development of RDF appli-
cations focused on the discovery, management, integra-
tion, and navigation of metadata. EOR consists of services
that can be used as applications themselves, but its real
intent is to serve as a toolkit for developers writing their
own metadata applications.

EOR is built on public-domain software that adheres
to open standards. Eric Miller started the project in April
2000 and is still actively involved as the project lead.

28 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

Subject

http://eor.dublincore.org/eor-install.html

T Predicate

http://purl.org/dc/elements/!. 1/creator

Object

Harry Wagner

Figure 1. Simple RDF Statement

Version 1.0 was publicly announced in May 2001, and the
current release is version 1.01. EOR is a good example of
the type of functionally rich RDF applications that are
available to the library community. It is one of many open
source RDF applications that are being used to build
search engines and other information management appli-
cations. Dave Beckett's RDF Resource Guide (www.ilrt.
bris.ac.uk/discovery/rdf/resources) is an excellent
source of similar applications.

The EOR source code (available for download from
the project home page) is intended to serve two pur-
poses: to demonstrate by example functionality common
to all metadata applications, and to serve as an advanced

starting point for developers writing their own RDF

applications. Providing this base level of functionality
promotes rapid development by enabling application
developers to focus their efforts on source code specific
to their applications.

The project is comprised of services that provide the

following functions:

■ A user-authentication service that demonstrates with a

simple interface how to authorize users. Authen-
tication records are saved as RDF models.

■ A validation service to validate and serialize RDF

models. Models can be rendered in any of three

ways: as a collection of RDF statements (triples), a

serialized model, or as a graph using RDFViz (an
open source RDF graphics generator). 5

■ An infuse service for saving RDF models to a persist-
ent data store.

■ A delete service to remove models from persistent
storage.

■ An RDF search engine that performs simple and

compound searches against the data store. The search
results are returned to the client session as an RDF

model and then rendered into a number of formats
using XSLT (see figure 2).

■ A session management service that provides a sup-
port interface for managing such session objects as

saved models, session attributes, cookies, and per-
sistent models.

■ An administration service for creating and deleting
persistent data stores.

Each of the EOR services will run independently of
the others, making them a mix-and-match grab bag for

developers. For example, almost all metadata applica-
tions will provide a search interface; some might choose
to provide an interface to save data to persistent storage.
Others may elect to provide an interface for users to ere-

ate and manage one or more personal save areas. EOR is

designed to facilitate the development of each of these
functionally different applications by providing source

code and services that not only demonstrate that func-

tionality, but that also serve as an advanced starting point
from which to begin coding.

I Open Source Tools
Used to Develop EOR

EOR was developed using the Red Hat Linux (http://
redhat.com) version 6.2 operating system. Linux is a

mature, robust, multitasking operating system, initially
developed by Linus Torvalds. It is the largest, and

arguably the most successful, open source project to date.
The Apache HTTP Server is installed as part of most

Linux installations (There is a saying within the Linux

community: "Linux is like a wigwam, no gates, no win-
dows, and an Apache inside.") and is the HTTP server

used to develop EOR. Apache is without doubt the most

popular HTTP server available today, and for good rea-

son—it is feature-rich, extensible, robust, and it is open
source. It is also one of the largest and most mature open
source projects in existence, dating back to 1995, and is
licensed by the Apache Software Foundation (http://
apache.org).

EOR is a server-side Java application composed pri-
marily of Java servlets and Java Server Pages (JSPs). EOR,
like all server-side Java applications, runs in the context

of an application server (sometimes referred to as a

servlet engine), which is a Java-enabling extension to an

HTTP server. Client requests are processed to and from
the application server via HTTP.

EOR was developed with the Jakarta Tomcat

(http://jakarta.apache.org) application server. Tomcat is
an open source project and the official reference imple-
mentation for Java Servlets and JSPs. It was developed
under the Java Community Process and was donated

by Sun to the Apache Software foundation. One of the

THE EOR TOOLKIT I WAGNER 29

toaai Lfisic yalsMs ,c£»si Beam s^aki* SfissiflD Aacanigaoai

Enhanced EOR Search Interface (Advanced)
The loKMMfto irxertaco can be used to search rof databases Tins intoitaco supports both srmpso and compound searches
Choose between the two using the (doming link Simae / Advanced

Subjsctl: |
Predicate1: Jmp/ftMt oig/aotesnwuvi i/cc*w<m»i
Objtctl: Jhohvv^W

Subj«ct2: |
Predlcate2: ^/ip//p>d oqA3cfeiem«nit/i i/twe
Object2:

or lecrwiacwaj
Of [none 3
Ot jnnlill ~~~2

or |eorwiacw)ji|
Of (none

pool Of | none

Select • Detebese: faow 3

Display resources that the retultset references (at a subject):
Display resources that the retultset It referenced by (as an object):
Display the RDF Query model before using It:

PYes r No

TYes r» No

r-Yes <* No

Select en XSl stylesheet: | Generic Tmutator. <«o«(B2Mb

Subrw I Peter'I

httpJdublincort.orgfoocuments/2001 r06r2Srdcnm-namespace/

Figure 2. EOR Search Service

benefits realized by developing EOR with Tomcat is that
EOR should run under any application server that com-

plies with the reference release.
Search results are processed by EOR's search service

and returned to the client's session as an RDF model. RDF
models, being an application of XML, can be rendered into
HTML (or a number of other formats) using XSLT. For this,
EOR uses Xalan-Java version 2 (http://xml.apache.org/
xalan-j/index.html), another open source distribution from
the Apache Software Foundation. The EOR source includes
a number of different XSLT style sheets that can be used to

render search results into different formats.
EOR uses Jakarta Ant (http://jakarta.apache.org/

ant/index.html), another open source distribution from
the Apache Software Foundation, for project builds. Ant
is a Java-based build tool that is best described as "the
Unix make utility, on steroids." Because it is Java-based, it
is consistent across platforms and will run anywhere that
Java runs. It also has the advantage of being able to inter-
face natively with the Java compiler, which greatly
decreases the time required for builds. It is similar to the
Unix make utility in that it operates on "targets" that are
specified at runtime. It uses XML syntax, and as a result,
is much easier to use than the make utility.

The Blackdown Project (http://blackdown.org)
describes a group of developers that were responsible for
the first ports of the Java Developers Kit (JDK) to the
Linux platform. Tod Matola, one of the EOR version 1.0

developers, was part of the Blackdown team and EOR

H was developed using the Blackdown

| version 1.2 port.
The Blackdown JDK is the one excep-

tion to the open source approach used to

develop EOR. Java is developed using
Sun's Java Community Process, which
has some similarities to open source and
is dedicated to open standards but is not,
as yet, open source.

6 George Paolini,
Sun's vice-president of technologies
advocacy and community development,
reported in an interview with IDG News
Service at last year's ApacheCon 2000

- conference that Sun would eventually
make Java fully open source, but did not

provide a timeline for this transition.7

Whether or not Java will go open source,
and when, is a subject of seemingly end-
less debate, and Sun has received some

unfavorable press as a result.
Several proposals for an RDF applica-

s tion programming interface (API) have
been presented, but none, as yet, have
become standard.8 EOR uses a sample
implementation of one of the proposals,
the Stanford RDF API (www-db.
stanford.edu/-melnik/rdf/api.html).

This API is an open source distribution and implements
the Simple RDF parser and compiler (SiRPAC) (www.w3.
org/RDF/Implementations/SiRPAC), which is the W3C
reference implementation for RDF parsers. EOR uses the
Stanford RDF API for all RDF related processing, such as

parsing and serializing models, and creating resources

and literals.
EOR uses a relational database management system

(RDBMS) for persistent data storage and was developed
using MySQL (http://mysql.com), an open source

RDBMS. EOR uses a factory approach to database imple-
mentation that is designed to support all SQL92-compli-
ant database management systems. Implementations for
MySQL and PostgreSQL are currently provided.

I How Is EOR Being Used?

The Dublin Core Metadata Initiative (DCMI) Web site
search engine (http://dublincore.org/services/search.
jsp) was built based on EOR. This is a full-text RDF search
engine that provides an interface for searching the DCMI
Web site. Users can specify searches across elements, or
match text on any of the fifteen elements in the Dublin
Core element set.

The Department of Defense, with the help of
McDonald Bradley, is currently developing a virtual

30 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

knowledge base application based on EOR. It will intelli-

gently link multiple distributed and heterogeneous data
sources, including databases, imagery, video, audio, and
documents.

Two additional projects in development have built

prototype applications based on EOR: SCHEMAS Forum

Vocabulary Registry and the Open Metadata Registry.
The SCHEMAS project (http://reg.ukoln.ac.uk/

registry/jsp/sforum.jsp) is currently in development by
the United Kingdom Office for Library and Information

Networking (UKOLN), and is funded by the Information
Society Technologies (1ST) Program. Its goal is the devel-

opment of a comprehensive database of RDF schemas,
application profiles, and related semantics that have been
used by programs under the 1ST Program and other
related European initiatives. The SCHEMAS database
will be used to promote the reuse and interoperability of
semantics for existing and new projects.

The Open Metadata Registry (http://wip.dublincore.
org:8080/registry/registryl) has much in common with
the SCHEMAS project. Its goal, like the SCHEMAS proj-
ect, is the creation of a database comprised of vocabularies
and related semantics belonging to various resource com-

munities. Also like the SCHEMAS project, the Open
Metadata Registry will be used to promote the discovery
and reuse of semantics within existing vocabularies and
the creation of new vocabularies. The real difference
between the two, however, is that the Open Metadata

Registry project will register vocabularies relating to the
Dublin Core Metadata Initiative, whereas the SCHEMAS

project will register RDF schemas and namespaces used

by projects within the European Union. The Open
Metadata Registry project is currently under development
by the Dublin Core Metadata Initiative.

■ Conclusion

The fundamental issues (such as discovery, classification,
cataloging) for managing information available from the
Internet are not very different than those required for

books, serials, and other traditional resources. The tech-

nology is different but not the underlying issues.

Managing the discovery, classification, and integration of
the growing volume of Web sites and other electronic
resources is a task that will require the skills of profes-
sional librarians. Libraries can take a leading role in solv-

ing these problems by leveraging their collective skills

and expertise in a collaborative environment to create

applications and services based on RDF metadata, open
standards, and open source.

RDF provides solutions that will enable a significantly
higher degree of reliability, relevance, and accuracy for

applications and services focused on resource discovery
and management of Web sites and other Internet
resources. Through its use of machine-understandable
semantics, RDF enables the automated discovery, man-
agement, and exchange of metadata. It significantly
improves resource discovery by enabling a finer degree of
granularity and improved precision. In addition to facili-

tating the creation of new resource descriptions, RDF
builds on the established work of various resource com-

munities by enabling the interoperability of existing
metadata vocabularies within those communities.

EOR is one of a large and growing number of open
source applications that are being used to develop appli-
cations and services focused on the discovery, manage-
ment, integration, and navigation of electronic resources.

The number of high-quality open source distributions
available in the last few years has increased dramatically.
The library community can use these open source distri-
buttons, in combination with the advanced functionality
provided with RDF toolkits such as EOR, to develop
applications and services that enable a more effective and
robust use of the Web and other electronic resources.

References and Notes

1. W3C, Semantic Web Activity. Accessed June 20, 2001,
www.w3.org/2001/sw.

2. W3C, Semantic Web Activity: Resource Description
Framework. Accessed June 20, 2001, www.w3.org/RDF.

3. Cyveillance, Inc., Internet Exceeds 2 Billion Pages. Accessed
July 6,2001, www.cyveillance.com/web/us/newsroom/releases/
2000/2000-07-10.htm.

4. OCLC Office of Research. Dublin Core Metadata

Initiative, Extensible Open RDF Toolkit. Accessed July 23, 2001,
http://eor.dublincore.org.

5. Dan Brickley, Institute for Learning and Research

Technology, RDFViz. Accessed July 23, 2001, http://rdfviz.org.
6. Sun Microsystems, Community Development of Java

Technology Specifications. Accessed July 2, 2001, http://jcp.org.
7. Laura Rohde, Network World, Inc., IDG News Service,

Sun Says Java Moving towards Full Open Source. Accessed July
16,2001, www.nwfusion.com/news/2000/1024javasource.html.

8. Peter Hannappel, Summary of Recent Discussions about
an Application Programming Interface for RDF. Accessed July 9,
2001, http: / /nestroy.wi-inf.uni-essen.de/rdf/sum_rdf_api.

THE EOR TOOLKIT I WAGNER 31

Content Conversion S|ervi

An ISO 9002 certified company

Experts in SGML, ,

Electronic and Imaging Conversions

a><fnm>Steven <Z

izunider<orf
■n*. NY \A83\<i/cXy^

I aboratory;
,^/cr.y-" .

-'v vv<xx 4M »- ?< \
>

m W i

PacificData
CONVERSION CORR

207 E. Forest Drive, Box 396 • Pocono Pines, PA 18350
Phone:(570) 646-5302 • FAX: (570) 646-5317
email: ihanney@epix.net • www.spitech.com/pdcc

Open Source,
Open Standards Karen Coyle

When people speak ofopen source software they are refer-
ring to computer code—programs that run. But code is

only the final step in the information technology process.
Prior to writing code the information technology profes-
sional must do analysis to determine the nature of the
problem to be solved and the best way to solve it. When

software projects fail, the failure is more often than not

attributable to shortcomings in the planning and analy-
sis phase rather than in the coding itself. Open source

software provides some particular challenges for plan-
ning since the code itself will be worked on by different
programmers and will evolve over time. The success ofan
open source project will clearly depend on the clarity of
the shared vision of the goals of the software and some

strong definitions of basic functions and how they will
work. This all-important work of defining often takes

place through standards and the development of stan-
dards that everyone can use has become a movement in

itself: open standards.

Open
standards are publicly available standards

that anyone can incorporate into their software.
An example from the library environment is the

MARC record standard. The original documentation for
the MARC record was published by the American
National Standards Institute.1 The most common use of
the standard, that of the MARC21 records that libraries
adhere to, is also published and available for use. No one

owns the MARC record format; there are no fees for its
use and no restrictions on who can use it in their prod-
ucts. Any software developer who wishes to write for

library systems therefore has access to a vital part of the
system needs: the basic data structure that libraries use

today.
This may seem so obvious that its importance is hard

to grasp. In fact, the library world has probably made
more use of open standards than practically any other

industry. Let's face it, "open" is practically our middle
name. Examples from the non-open world of proprietary
software might help us understand the importance of our
preference for open standards, and the examples are not

hard to find: Microsoft Windows versus the Macintosh

operating system; VHS versus Betamax; Nintendo versus

Sega. In each case you have unique products that are

inherently incompatible. As a matter of fact, this incom-

patibility is purposeful and actually enhanced by the

companies in question as part of their market strategy. If
you need to compete, then openness is a disadvantage. If
you need to cooperate, then openness is the way to go.

■ Goals of Open Standards

Open standards can serve multiple needs. The most com-
mon one is the need for interoperability. Interoperability
refers to communication between systems or system
parts. In the highly networked world of the twenty-first
century, the ability for computer systems to exchange
data in order to carry out basic functions is absolutely
vital since most systems operate in a vast and varied dig-
ital community. Our library systems communicate elec-

tronically with sources of bibliographic records, book
vendors, and users. They also now interconnect them-
selves with networked information resources outside of
the library and deliver these through library-maintained
interfaces. Much of this communication is through open-
standard interfaces, such as Z39.50, Electronic Data

Interchange (EDI), and hypertext transport protocol
(HTTP).2 These standards operate at the point where sys-
tern boundaries touch; they determine the rules of the

digital membrane but do not determine how systems
handle data up to that point of permeability. Internally,
few systems store bibliographic data in the format pre-
scribed by ANSI Z39.2, the basis for the MARC record.
But they are able to transform the data into that format for
communication with other systems.

Another purpose of open standards is to create the
framework for a community. In many ways this is the

prime reason for many library standards. The use of com-
mon cataloging rules does not so much allow libraries to

intercommunicate as it does create a certain look and feel
and a commonality between libraries that is an aid to

users. It allows users to move between libraries without

having to learn a whole new process for finding materials,
and it makes it possible for the library profession to train
librarians and hire from among a pool of candidates. The
cataloging rules, published and readily available to any-
one with the desire and patience to learn them, con-

tributed to the rise of professional (rather than artisan)
librarianship. Creating the rules brought members of the
library community together to ponder not only the

vagaries of title pages but also to confront some basic

philosophical issues about the organization of knowledge.
Today, in a world where many activities are performed

through computer programs, open standards can be prom-
ulgated as a way to encourage decentralized development.
Much of the work of the World Wide Web Consortium

(W3C) falls into this area. The W3C is a membership-spon-
sored standards body that creates new standards for the

Karen Coyle (www.kcoyle.net) is a Systems Developer at the
California Digital Library, Oakland.

OPEN SOURCE, OPEN STANDARDS I COYLE 33

Web. These standards can be used by anyone writing soft-
ware for the Web. What is critical about many of these stan-
dards is that they set the foundation for entirely new Web
functions; functions that will only work if many different
people develop their part of the software that is needed.

This is rather hard to describe but should become clear
with an example. I'll use the recent development of the
Platform for Privacy Preferences (P3P).3 P3P is a set of rules
that allows Web sites to describe their privacy practices in
a standard way. It would also allow Web users to express
their "privacy preferences" using the same standard

vocabulary. P3P does not specify how this will be imple-
mented on the Web; the development of actual software
will be left to the rather amorphous Web community. For
P3P to be part of the Web, it will be necessary for Web site
owners to incorporate P3P into their sites, and for Web
browsers to create a user interface to the function. But for
P3P to be successful, it needs to be recognized by all major
browsers (Internet Explorer, Netscape, and AOL), and it
must be used by a large number of Web sites. Since many
companies and institutions make use of software like

FrontPage or Cold Fusion to develop their large and com-

plex Web sites, tools for building P3P will need to be
included in these packages. By specifying a standard for

privacy preferences, the W3C is attempting to set in motion
a very decentralized software development project that
will need to be undertaken by a wide variety of players.

■ Sort of Open versus Really Open

Although we speak about open standards, some are more

open than others. This is because there are a variety of

aspects to open standards, and standards that call them-
selves open do not always adhere to all of these.

Open standards are:

■ standards that anyone can use to develop software or
functions;

■ standards in which anyone can participate in their

development and modification; and
■ standards that anyone can obtain without a signifi-

cant price barrier.

The best example of standards that meet all of those
criteria are those created by the Internet Engineering Task
Force (IETF). The IETF dates back to pre-Internet days,
when it was a group of engineers working on the first

developments that eventually became the basis for that
network. These engineers developed a way of chronicling
and communicating their technical ideas through a series
of documents called Requests for Comments or RFCs.4

The first RFCs were almost in the form of notices ("OK,
I'm going to send packets with a 5-byte header, let me
know if you can read them"), but as time went on the

RFCs became well-thought-out standards that had been

developed by groups of volunteers. Anyone can com-

ment on the RFC, either to point out errors or to make

suggestions. Even after the technical decisions in the RFC
are accepted and implemented, the RFC remains an RFC.
Some RFCs improve or comment on previous ones, as

technology changes or as better ideas arise.
The functioning of the IETF is like a lesson in democ-

racy: one person or a group of people sees the need for a

new or modified function for the Internet; they draft a pro-
posal which is placed on the Internet for anyone to read
and comment on; if the proposed function meets a need
and is successfully tested with an actual program, it
becomes part of Internet use. The IETF is open to anyone
who wishes to participate. That last statement needs qual-
ification, however: participation in the IETF requires a high
level of technical knowledge and a considerable amount of
a person's time. Those who make up the various IETF com-
mittees are a self-selected technocracy. And while the phi-
losophy of the IETF is one of engineering "purity," today's
committees invariably have members who represent tech-
nology companies that often have a particular bias toward
their own products. Still, there is no other standards organ-
ization that is as open as the IETF, and there is still consid-
erable input from the academic and research communities.

This can be compared to the W3C, the standards
organization formed to develop and promulgate stan-
dards for the Web. Participation in the W3C is limited to

members—predominantly technology companies—who
pay between $5,000 and $50,000 per year to belong to the

group. Compared to the IETF, this group is lacking the
academic and research engineers who bring a financially
neutral viewpoint to the discussions. There are also
almost no members who might represent a public interest
viewpoint. This latter is significant because the W3C does
not limit itself to standards of engineering; there is an

effort called Technology and Society (within which P3P
was developed) that develops standards for functions
like content filtering and privacy.

There are a number of other standards bodies, such as

the National Information Standards Organization (NISO),
the International Standards Organization (ISO), and the
American National Standards Institute (ANSI). These
organizations have members who participate directly in
the development of standards. The standards, once devel-
oped, are not only open for use, but some of them are actu-

ally mandatory within certain industries. Obtaining the
actual text of the standards is, however, another question.

Standards-making is an expensive enterprise and
standards bodies have traditionally made money on the
sale of the printed form of their standards. Since many
companies and organizations would be required to
adhere to the standard, this provided a kind of guaran-
teed audience for the standards documents, many of
which carried rather hefty price tags. The W3C, having

34 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

arisen from the Internet community (and with the exam-

pie of the IETF preceding it) makes its standards available
for open access on the Web. In comparison, the document
from ISO describing the Universal Character Set which all
modern computing is moving toward is priced at about
one hundred dollars. Although it isn't a huge price if
viewed in light of the research and development budget
of a company, it does make it difficult for small organiza-
tions, nonprofits, schools and libraries, and individuals to
make active use of the standards. Responding to these
needs and to the move toward greater openness in the
standards area, in 2000 NISO became the only national
standards organization making its standards available
over the Internet for free. There is some risk because this
removes a significant revenue stream from the organiza-
tion. The gain is that the organization should be even

more successful in its primary mission, which is that of

providing standards for widespread use.

■ Open Standards and Libraries

The first of the library technology standards was the deci-
sion at the first annual ALA meeting in September of 1877
to standardize the catalog card at 7.5 x 12.5 cm.

5 While
this was intended to make mass production of cards pos-
sible (and by analogy more standardized production of
card cabinets as well), the advantages of an open stan-

dard manifested themselves when in 1898 the Library of
Congress (LC) began its printed card service. This was

possible only because libraries in the United States were

using the same sized card and thus filing into cabinets
that held cards of that size. We can consider the LC card
service the technological predecessor of the MARC record
service of the latter half of the twentieth century. The
card-size standard was its key to interoperability.

The next technological standard of great interest was
the computerization of those same cards through the

MARC record standard. Prior to the development of what
we now think of as MARC, a group of librarians led by
Henriette Avram of LC developed a machine-readable
record format standard for bibliographic data, ANSI
Z39.2. This standard made use of other national stan-

dards, such as the ASCII character set. Although at the

time only LC had the capability of producing the records

(and the motivation to do so), this is arguably the most

significant technological development of modern librari-

anship. By establishing an open standard for machine-

readable records, LC created the basis for the

computerization of library catalogs. That wasn't the

intention in 1965 when Z39.2 was proposed, however. LC
was focused on automating its card production services
and creating a print-on-demand card service. Like

Dewey's desire to reduce the cost of card-stock produc

tion, the LC standard, because it was open, was available
to be used in ways that its creators had not yet imagined.

Few library open standards have been as successful as
the MARC standard. Since 1965 arguably the most widely
used standard is Z39.50, the protocol for information
retrieval from remote databases. Z39.50 takes advantage
of the existence of searchable bibliographic databases in

library automation systems and the networking provided
through the Internet. The protocol had a somewhat slow

beginning, partly due to its complexity, but today the

functionality is included in most library system packages
and there are even open source versions of the software.

Other standards have been less successful. One exam-

pie is the Common Command Language (CCL), Z39.58.
CCL is a standard set of commands for searching in
online catalogs that was developed by NISO in 1992.
When the standard came up for its five-year NISO review
the organization's members allowed the standard to

lapse. Although some systems claim to use a common

command language, these generally do not use the stan-

dard commands defined in the NISO standard. So how
did a standard become not a standard after all?

The reason for creating a common command language
was not unlike one of the original motivations behind a

standardized set of cataloging rules: the uniformity
between libraries makes it easier for users to move from

library to library. A common command language is espe-
daily important in current times because users may be

using a number of library systems almost simultaneously
over the Internet. Why would such a useful standard fail?
There are a number of reasons why standards might not be
adopted. One of the obvious ones in terms of the CCL stan-
dard is the fact that the technology that the standard

responded to, the command-line interface to library data-

bases, was eclipsed by a new technology, the Web browser.

Although some command-line searching remains, it is
not the main user interface. Another reason for the lack of

adoption of the CCL is something that gives standards

development a tricky aspect: people seem less likely to

accept standards that affect the content aspects of their

computer systems. Successful standards tend to define

background functions, and leave a great deal of flexibility
for system developers in terms of presentation. For exam-
pie, the protocols that control the Internet e-mail function
do not dictate how e-mail will be presented to the user.

Everything from the command line Pine e-mail software
to the almost user-obsequious Microsoft Outlook product
make use of the same e-mail protocols. Yet another reason
is that standardizing the command line gains you very lit-
tie where the underlying indexes of the system are not

themselves standardized. The command line is merely
the interface to a much more complex set of decisions
about what fields feed into what indexes, and about how
the data in those language-based fields is treated for the

purpose of searching.

OPEN SOURCE, OPEN STANDARDS I COYLE 35

The lesson here is that not all aspects of systems are

ideal candidates for normalization. Whether rational or
whimsical, system developers clearly express a need to

have a certain amount of freedom. Standards need to

facilitate functionality without suppressing the creativity
of system developers or their ability to meet the needs of
their particular target audience. Standards work best in
the underlying technology layers and less well the closer
one gets to the actual user.

Some library standards currently in development
might fit this bill. For example, the NISO Circulation

Interchange Protocol (NCIP) standard for interlibrary
loan (ILL) is intended to facilitate interoperability
between library systems for ILL transactions.6 ILL is an

obvious area where communication between diverse sys-
terns is needed for automation of the function.

Libraries don't live by library standards alone, how-
ever. Increasingly our library systems are interacting with
the wider world of technology, delivering library services
over public networks. We use mainstream standards such
as the Internet protocols developed by the IETF, the Web

protocols of the W3C, the character sets defined interna-

tionally by the ISO. Library representatives were heavily
involved in the latter effort, having already participated in
the development of a similar standard known as Unicode.
However, there is virtually no library participation in

organizations such as the IETF or W3C, even though the
standards developed by these organizations are vital to our
operations. Not only are libraries missing from the stan-

dards groups, so also are schools and nonprofit organiza-
tions, which are kept out not only by the membership fees
but also by the labor requirements for active participation:
the need to dedicate a significant amount of time of a

highly skilled technical worker to the standards process.
While it is unlikely that individual libraries would be

able to be active in a standards organization, we now

have a possible model for greater library participation: in
2000, the American Library Association (ALA) joined the

Open eBook Forum (OEBF), an industry group working
on e-book standards. By leveraging the strength of ALA's
membership it has been possible to spread the burden of

participation while at the same time provide a visible

library presence for the standards process.

■ Conclusion

The Internet has given us an entirely new model for the

cooperative development of highly complex systems and

subsequently of the standards that allow those systems to
work. Although the Internet has not lived up to some of the
Utopian promises of its early days, it still allows a low

entry barrier for active participation; so low in fact that
individuals can create their own Web sites right on the
same network beside those of major companies. We might
not be able to give all of the credit to the IETF and its exam-
pie of open standards, but it is clear that open standards
are an essential element in the success of the Internet and
its widespread use. Continuing the open standards tradi-
tion will be essential for its continued success.

References and Notes

1. National Information Standards Organization (U.S.),
Information Interchange Format (Bethesda, Md.: NISO Pr., 1994.)
National Information Standards Series ANSI/NISO Z39.2-1994.

2. National Information Standards Organization, Information
Retrieval (Z39.50): Application Service Definition and Protocol

Specification (Bethesda, Md.: NISO Pr., 1995.)
3. Full documentation on P3P is available at www.w3.org/

P3P. Accessed Oct. 2, 2001.
4. There are a number of sites that house searchable copies of

the IETF RFCs. The official IETF RFC site is www.ietf.org/
rfc.html. Accessed Oct. 2, 2001.

5. Wayne A. Wiegand, Irrepressible Reformer: A Biography of
Melvil Dewey (Chicago: ALA, 1996): 53-54.

6. NISO Circulation Interchange Protocol is a draft standard,
available for review and testing. Accessed Oct. 2, 2001,
www.niso.org/committees/committee_at.html.

Related URLs

American National Standards Institute
www.ansi.org

Internet Engineering Task Force

www.ietf.org
International Organization for Standardization

www.iso.org
Library of Congress MARC Standards Office

lcweb.loc.gov/marc
National Information Standards Organization

www.niso.org
Open eBook Forum

www.openebook.org
World Wide Web Consortium

www.w3.org

36 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

^ti^Technology Titles
from ALA Editions

Usability Testing
for Library Websites Q

AHands-On

ELAINA NORLIN tS CM! WINTERS

MANAGING
ELECTRONIC
RESERVES

JEFF ROSEDALE
Editor

Price: $32.00
112 pages

6" X 9" • Softcover
ISBN: 0-8389-3511-7

ALA Order #: 3511-7-2262

Price: $42.00
176 pages

6" X 9" • Softcover
ISBN: 0-8389-0812-8

ALA Order#: 0812-8-2262

Price: $40.00
168 pages

7" X 10" • Softcover
ISBN: 0-8389-0805-5

ALA Order #: 0805-5-2262

Price: $38.00
200 pages

6" X 9" • Softcover
ISBN: 0-8389-3510-9

ALA Order #: 3510-9-2262

CREATING
fl ^yinningOnline
EXHIBITION

jj .4 Guide for Libraries,
§ Archives, and Mineurns

%

Online
Community
Information
Creating a Nexus
at Your Library

January 2002
Price: $45.00

144 pages
6" X 9" • Softcover

ISBN: 0-8389-0815-2
ALA Order#: 0815-2-2262

January 2002
Price: $40.00

136 pages
8.5" X 11" • Softcover
ISBN: 0-8389-0817-9

ALA Order#: 0817-9-2262

February 2002
Price: $28.00

96 pages
6" X 9" • Softcover

ISBN: 0-8389-0824-1
ALA Order #: 0817-9-2262

March 2002
Price: $42.00

208 pages
6" X 9" • Softcover

ISBN: 0-8389-0823-3
ALA Order #: 0823-3-2262

^^Editions

Visit the NEW "ALA Online Store" at

www.alastore.ala.org
(Or call us at 1-866-SHOP ALA)

Software Reviews Christian Poehlmann

ProCite 5.0

2141 Palomar Airport Rd., Ste. 350
Carlsbad, CA 92009
1-800-722-1227
info@isiresearchsoft.com

Price: Full retail version $395.95, stu-
dents $109.95, single-use upgrade $99.95.

System requirements: Microsoft Win-
doxvs 95/98/NT4/2000/XP. Word processor
compatibility: Microsoft Word for Windows

7, 97, 2000; Corel WordPerfect 7, 8, 9.
Macintosh version system require-

ments: PowerPC/Mac with Macintosh

operating system or compatible (120MHz
recommended); Apple MacOS System 7.5.5
or later.

Reference Manager 9.5
2141 Palomar Airport Rd., Ste. 350
Carlsbad, CA 92009
1-800-722-1227
info@isiresearchsoft.com

Price: Full retail version $395.95, stu-
dents $109.95, single-use upgrade $99.95

System requirements: Microsoft Win-
dows 98/ME/XP/NT4/2000. Word processor
compatibility: Microsoft Word for Windows;
XP, 2000, 97 and 7; Corel WordPerfect 8,
2000,2002.

Anyone who has ever published a

scholarly book or paper knows that
the most tedious aspect is generating
the bibliography. Nor is any task asso-
ciated with this so prone to avoidable
error. ISI ResearchSoft has made this
task a little less tedious with its suite
of bibliographic management prod-
ucts. Bibliographic management soft-
ware eliminates the need for writing
citations on file cards for later use.

Citations can be entered into the data-

Christian Poehlmann (poehlmann. 1 @

nd.edu) is Manager of the Business
Information Center at Mendoza College
of Business, University of Notre Dame,
Indiana.

base manually; they often can be

imported from a database on the
Internet. Once the citations are in the

bibliographic reference manager file,
they can be retrieved by a variety of
means and used for articles, books,
and any other publication requiring a

bibliography or citations. The refer-
ence manager software automatically
reformats the citations according to

any one of the hundreds of prede-
fined output styles, which vary from
journal to journal.

Two of these products, Reference
Manager and ProCite, are reviewed
here. Endnote was reviewed in the
December 2000 issue of ITAL, but an
updated version was recently
released, and the differences between
versions are addressed in these pages
as well.

ProCite and Reference Manager
can be used apart from a word pro-
cessing application to search the
Z39.50 databases, to search for refer-
ences within a bibliographic file, or to
generate a bibliography. Conversely,
they have the capability to integrate
themselves into Microsoft Word or

WordPerfect via their Cite While You
Write (CWYW) function. This allows
the author to format citations and

generate a bibliography with a few

simple commands.
Installation on a Windows NT 4.0

machine running Microsoft Office
2000 was quick and straightforward.
ProCite and Reference Manager both
integrated seamlessly as add-ins with
Word during installation and should
do so with WordPerfect. Installation
results in a new toolbar as well as a

new pull-down menu item for Word.
When you install either of these prod-
ucts, the installation software deter-
mines which versions of Word or

WordPerfect are available and installs
the CWYW function automatically.
However, if Word or WordPerfect is
installed after installing either of
these products, the CWYW setup
must be run for the function to appear
in the word processor's Tools menu.

ProCite has a Macintosh version
available, while Reference Manager

only exists in a Windows version.
The look and feel of both products is

nearly identical. In fact, the toolbar is
identical and only slight differences
exist in the pull down menus. Of
course, this means that they have

many functions in common as well.
Each can search Internet databases,
organize references, and format bibli-
ographies. A bibliographic file ere-

ated by ProCite, Reference Manager,
or EndNote can be easily converted
to a form usable by any other of those
three applications.

A primary function of a biblio-

graphic manager is to create, manip-
ulate, and format bibliographic
references. This is a formidable task
when the number of bibliographic
references in a scholarly work can

number in the hundreds or even

thousands. Of the many capabilities
of this type of application, managing
references is one of the more mature

functions. A particularly useful func-
tion is the ability to reformat citations
to meet the demands of a particular
journal. Both Reference Manager and
ProCite allow more than six hundred

output styles, such as MLA, Chicago,
and APA. Another important func-
tion is to facilitate searching of

Z39.50-compatible Internet databases
for relevant bibliographic references,
although this function is less sophisti-
cated than the bibliographic manage-
ment ability.

In terms of basic functionality,
both products allow users to search
Z39.50 databases, organize refer-
ences, and format bibliographies.
Each application allows unlimited
references. Reference Manager allows
thirty-five fields in each reference
while the ProCite allows forty-five. In
terms of reference type (monograph,
journal, working paper), ProCite is
the clear leader in this area with fifty
predefined types and the ability to

add more. Reference Manager has

thirty-nine predefined types, but lim-
ited ability to add types.

Reference Manager and ProCite
allow the user to enter citations man-

ually, but their real convenience is the

38 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

ability to import citations from data-
bases. These two products will, via
appropriate filters, import the results
of these searches into the biblio-

graphic reference manager. ProCite
and Reference Manager have filters
for more than three hundred Internet
databases and online library catalogs.
Additionally, the user can create filters
manually. The search/import func-
tions are not as mature as the format-

ting functions and require a

significantly greater expertise and a

steeper learning curve. However, a

handful of selected data services
allow direct export using a plug-in
from ISI ResearchSoft. The Export
Plug-in is a free download from the
ISI Web site that installs a utility and

import filter required to export refer-
ences from ISI, Sea Change, and
BioMetNet Web-based products into
ProCite and Reference Manager. Most
of these data services are within the
ISI universe of products and exhibit a
strong bias toward scientific literature.

Reference Manager is a feature-
rich writer's tool for researchers,
offering three research tools in one: a

reference searcher, a database man-

ager, and a bibliography builder. The
reference searcher allows the user to

retrieve references from existing
Reference Manager databases, or

from an Internet Z39.50 database

using Boolean logic. Once references
from an Internet database have been
retrieved, they can be imported into
an existing Reference Manager biblio-
graphic file or saved to a new file. The
database manager function allows the
user to copy references within or

between databases and to copy data
from one reference to another. It also
allows the user to edit, add, or delete
authors and journal titles in the data-
base. The bibliography builder func-
tion allows the user to insert citations
into documents using the CWYW
add-in. Once citations are inserted,
Reference Manager can then generate
a bibliography. Workgroups may ben-
efit from multiuser read and write
access capabilities of the network
edition. Reference Manager is avail

able as a true network application
with multiple read /write access to
the same database—down to the
field level. This capability allows

multiple users to make changes
simultaneously to the bibliographic
database.

As the same company publishes
all three products, enough cross func-
tionality exists between the products
that it no longer makes any real sense
to continue the product line with
three separate and distinct titles.
EndNote and ProCite differences are

minimal. EndNote has multilingual
spell check capability, while ProCite
lacks any spell check function. On the
other hand, ProCite has reference

grouping and advanced searching
capabilities that do not exist in
EndNote. Each exists in both a

Macintosh and Windows version,
and each lacks true network capabil-
ity. Reference Manager, on the other

hand, lacks a Macintosh version but
has true networking functionality.

The searching function is of lim-
ited utility. Most of the proprietary
databases searchable via the Z39.50
standard require password authen-
tication rather than the standard
academic practice of using IP

authentication. This is not an issue,
however, with most online catalogs
and free databases.

New in Reference

Manager
As this review was being completed,
ISI released version 10 of Reference

Manager. Although this release was

not reviewed, ISI announced the

incorporation of several new features.

Among the more interesting is

CWYW with Instant Formatting. This
feature, available to users of
Microsoft Word, creates the bibliogra-
phy as the author types. In previous
versions, the bibliography was gener-
ated after the citations were entered
into the document. Then, using the

Generate Bibliography command on

the Tools menu, the users clicked on a

dialog box. Each of the citations
entered was converted to the in-text
citation format in the desired style
(MLA, APA). The list containing cited
references was then appended to the
document. With this new feature, the
only time the Generate Bibliography
command is used is to change the
selected output style or to modify lay-
out options. Preformatted biblio-

graphic styles now number more

than seven hundred.
Other features include the

enhanced ability for users of Micro-
soft Word to collaborate with col-

leagues using a traveling library.
This library is created automatically
as references are cited. When the
document is sent to colleagues for

editing, the library, containing all of
the necessary bibliographic data,
goes with it. Another new function-

ality is the ability to store links to

other resources in each reference.
Some examples of related resources

might be full-text articles, image
files on the Internet, or a network
hard drive.

Users from institutions that sub-
scribe to ISI Web of Science can now

create searches with Reference Man-

ager. Users with institutional access
to Web of Science may purchase key
reference data via ISI eSource on a

pay-per-view basis.

New in ProCite

Just as with Reference Manager,
ProCite gives Microsoft Word and
Corel WordPerfect users CWYW

ability. Some enhancements to

CWYW are: the option to see the full
record, including the abstract, when
selecting from multiple matches; the
ability to click sort on column head-

ings to locate a reference when

selecting from multiple matches;
and the ability to select from any of
the last ten citation searches to bring
up quickly the results of a previous
search.

The ability to define and modify
citation formats in each workform to

SOFTWARE REVIEW I POEHLMANN 39

allow accurate footnote formatting is
also a new feature. (Workforms are

fill-in-the-blank forms used to help
organize the information in each

record.) When a source is cited more

than once in a document, many style
guides require an alternate format for
the second and subsequent in-text
citations. ProCite now allows users to
define an alternate format to handle
this issue. Rounding out the list of
new formatting features is the ability
to preview the current workform def-
inition while creating or editing out-

put styles.
Language enhancements also

appear in this newest version.

Languages vary in their rules for

sorting characters, and ProCite has
the capability to sort according to the
current language setting. Czech,
Polish, and Russian (Cyrillic) have
been added to the international sort

options.

What's New in EndNote?

There are several new features in
EndNote 5, including enhanced word

processor support for Microsoft Word
97/2000. It is now possible to locate
and insert citations without leaving
Microsoft Word. Users can instantly
format citations as they are cited.

According to a press release dated

February 1, 2002, users of OCLC
FirstSearch can now also export infor-
mation to EndNote:

Using ISI ResearchSoft's Direct

Export feature, FirstSearch users

may now export one or more

bibliographic records directly
from OCLC FirstSearch into
EndNote software. This will
facilitate the creation of a bibli-

ography of material accessed in
FirstSearch databases during the
review of search results. 1

However, the most interesting
EndNote development is the travel-

ing library that follows the document

for easy collaboration. EndNote 5

automatically creates a reference list
as you cite references in Microsoft
Word, containing all of the biblio-

graphic information for all of your
citations. When sending this docu-
ment to colleagues for editing, you
will have provided them with all the

necessary information to add, delete,
and reformat citations.

Conclusion

Authors in scientific fields will bene-
fit most of all from these three prod-
ucts, but even those who produce
scholarly works in the arts and
humanities will find a bibliographic
manager to be a near necessity.

Reference
1. OCLC, FirstSearch News, February 1,
2002, Online Computer Library Center,
Inc. Accessed February 22, 2002, www.
oclc.org/ firstsearch/en/fsnews.htm#new.

Index to Advertisers

ALA Editions
Axonix
infoUSA

Libary Technologies

37 LITA
cover 4 OCLC

11 Pacific Data Conversion
26 University of Washington

18, cover 3
cover 2

32
25

40 INFORMATION TECHNOLOGY AND LIBRARIES I MARCH 2002

UT7\
Preconferences

at the
2002 ALA Annual Conference

in Atlanta

What is XML? How can XML be Used in Libraries?
Friday, June 14, 2002 - 9:00am - 5:00pm

For information about this preconference
visit www.lita.0rg/ac2002/xml.html

Working with Open Source Software: a hands-on workshop
Friday, June 14, 2002 - 9:00am - 5:00pm

Due to the "hands-on" nature of this preconference, space is
limited. Contact the LITA Office to ensure space is available.
For instructions see www.lita.0rg/ac2002/0pens0urce.html

The Library and Information Technology Association (LITA)
is a division of the American Library Association

AFFORDABLE AND FAST

Thousands of satisfied users appreciate:

Lowest cost per CD.

Networks up to 512 CD
titles.

Serves 1,000 users.

Fastest access times plus
66X transfer rates.

Compact, fits on a shelf.

Supports NT, Netware &

Mac, simultaneously.
Web Browser accessible.

DVD compatible.
Unburdens your LAN.

BEST
LAN TIMES
V 1 » » t ▼

SOFTWARE

NETWORK
CDs...

WITHOUT
CDs

Network your CD-ROMs today, but don't set-
tie for yesterday's technology. Forget those
big, slow and expensive CD towers. Using
one high-speed CD drive and TurboCaching,
SuperCD mirrors CD disks to a large hard
drive. Super CD eliminates the need for mul-
tiple CD drives. It's super fast and super
affordable, easy to use and easy to install.

Buy with confidence. Axonix backs its
products with a FULL ONE YEAR WAR-
RANTY. Plus, if you're not completely
satisfied, you can RETURN THE PROD-
UCT WITHIN 30 DAYS for a complete
refund. Axonix has a 18-year history
and we understand the value of cus-
tomer satisfaction.
Check our website for more SuperCD
information.

For a free catalog, contact:
Axonix Corporation
844 South 200 East, Salt Lake City, UT 841 1 1
800-866-9797 or sales@axonix.com

EDUCATION DISCOUNTS ARE AVAILABLE.

Tomorrow's
Library
TODAY
1.800

866.9797
www.axonix.com

E

Share and Save

